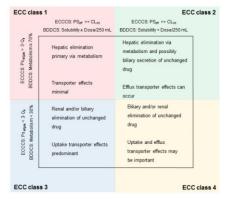


Drug disposition classification systems: A comparative review of BDDCS, ECCS and ECCCS

Birk Poller, Gian Camenisch - Novartis

SOLVO - Meet The Experts Transporter Conference

April 26, 2018

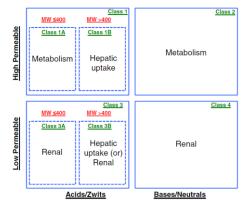

Drug disposition classification systems

BCS

	High Solubility	Low Solubility
High Permeability	Class 1 Metabolism	Class 2 Metabolism
Low Permeability	Class 3 Renal and/or Biliary Elimination of Unchanged Drug	Class 4 Renal and/or Biliary Elimination of Unchanged Drug

Amidon et al, 1995, Pharm Res;12:413-20

ECCCS


Camenisch et al, 2015, ADMET&DMPK;1:1-14 Camenisch, 2016, Pharm Res;33:2583-93

BDDCS

	High Solubility	Low Solubility	
Extensive Metabolism	Class 1 High Solubility Extensive Metabolism (Rapid Dissolution and 270% Metabolism for Blowaiver)	Class 2 Low Solubility Extensive Metabolism	
Poor Metabolism	Class 3 High Solubility Poor Metabolism	Class 4 Low Solubility Poor Metabolism	

Wu and Benet, 2005, Pharm Res;22:11-23

ECCS

Varma et al, 2015, Pharm Res;32:3785-802

Biopharmaceutics Drug Disposition Classification System (BDDCS)

metabolism ≥ 70% Perm_{pas} ≥ 5·10·⁶ cm/s Metabolism is predominant route of elimination

- Transporter effects are minimal in gut and liver
- Oral absorption is neither permeability nor solubility limited and complete (≥ 90%)

2

- Metabolism is predominant route of elimination
- Efflux transporter effects predominate in gut, both uptake and efflux transporters can affect liver
- Oral absorption is solubility limited

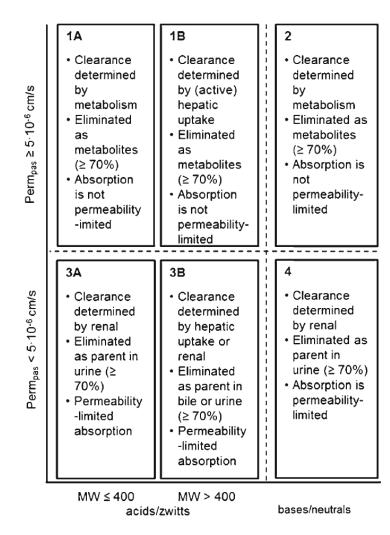
meatbolism < 70% Perm_{pas} < 5·10⁻⁶ cm/s

- Renal and/or biliary elimination of unchanged drug is important
- Uptake transporter effects predominan, efflux pump effects may occur
- Oral absorption is permeability limited

4

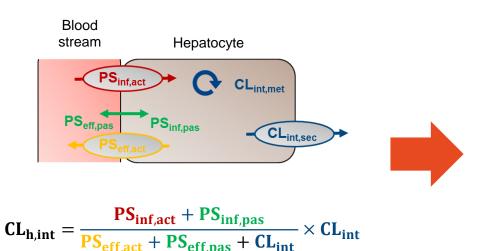
- Renal and/or biliary elimination of unchanged drug is important
- Uptake and efflux transporter effects may be important
- Oral absorption is limited by both solubility and permeability

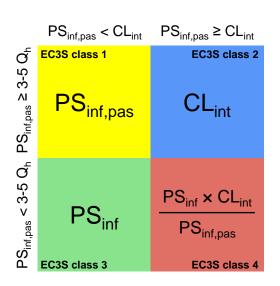
solubility ≥ D/250 mL


solubility < D/250 mL

Classification based on human *in vivo* metabolism (or passive permeability) and soluble dose

- → Rather applicable in late drug development phases
- → Provides information about involvement of potential transport processes in absorption and elimination
- → Observation based classification system


Extended Clearance Classification System (**ECCS**)



Classification based on *in vitro* permeability and physicochemical properties (MW, charge)

- → Applicable in early drug development phases
- → Allows to identify the rate-limiting clearance processes (absorption, distribution and elimination model)
- → Observation based classification system (based on the extended clearance concept)

Extended Clearance Concept Classification System (ECCCS = EC3S)

in vitro input parameters

PS_{inf.pas} Hepatic uptake / MDCK permeability

PS_{inf.act} Hepatic uptake

CL_{int,met} Liver microsomes / Hepatocytes / S9

CL_{int.sec} Sandwich-cultured hepatocytes

 $PS_{eff,act}$ = $PS_{inf,pas}$

Camenisch, 2016, Pharm Res;33:2583-93; Shitara et al, 2005, Annu Rev Pharmacol Toxicol;45:689-723 Sirianni and Pang, 1997, J Pharmacokinet Biopharm;25:449-70

Extended Clearance Concept Classification System (ECCCS = EC3S)

PS_{inf.pas} ≥ 5·Q_h

PSintpas < 5.Qh

- Clearance determined by (passive) hepatic uptake
- · Transporter effects are minimal
- · Blood largely overpredicts unbound intrahepatic concentrations
- Hepatic metabolism is major elimination mechanism (≥ 85%)

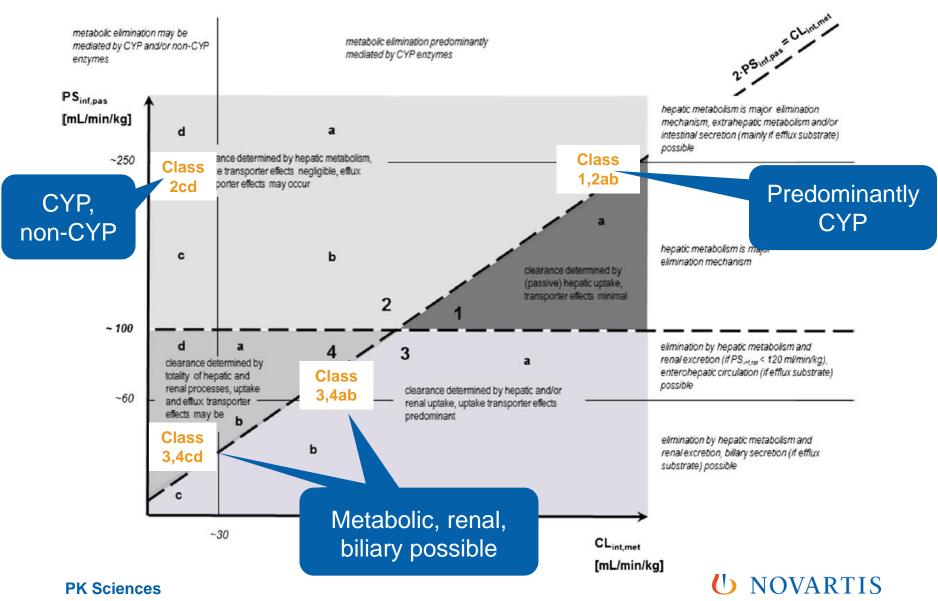
2

- Clearance determined by hepatic metabolism
- Uptake transporter effects are negligible. efflux pump effects may occur
- Blood appropriately reflects the unbound intrahepatic concentrations
- Hepatic metabolism is major elimination mechanism (≥ 85%)

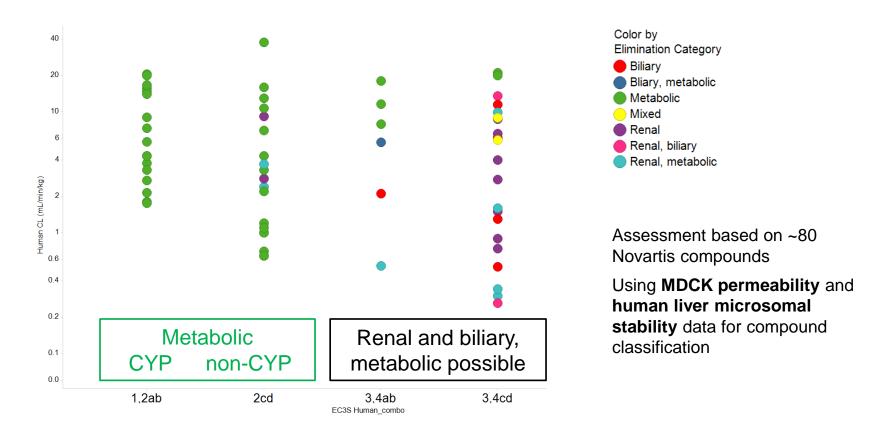
- · Clearance determined by hepatic and/or renal uptake
- · Uptake transporter effects predominant
- · Blood likely overpredicts unbound intrahepatic concentrations
- · Relevant nonmetabolic elimination likely

- Clearance determined by totality of all hepatic and/or renal processes
- Uptake and efflux transporter effects may be important
- Blood likely underpredicts unbound intrahepatic concentrations
- Relevant nonmetabolic elimination possible

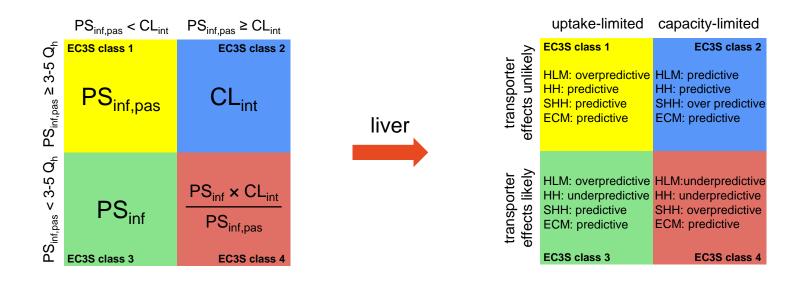
Classification based on *in vitro* permeability and in vitro metabolic and biliary clearance data


- → Allows to identify the rate-limiting clearance processes (absorption, distribution and elimination model)
- → Rate-limiting step of hepatic elimination
- → Model-based drug absorption, distribution and elimination drug classification system

 $PS_{inf,pas} \le CL_{int,tot}/2$


PS_{inf,pas} > CL_{int,tot}/2

EC3S – Elimination mechanisms


EC3S – Elimination mechanisms

- Metabolic elimination generally well predicted (MDCK-LE P_{app} > 5·10⁻⁶ cm/s)
- EC3S provides information for CYP (Class 1,2ab) vs non-CYP (class 3,4ab)
- → Prediction of major elimination mechanisms in early development phase

EC3S - Hepatic clearance IVIVE

Rate-determining process

Hypothesis: knowing the rate-limiting process of hepatic elimination will facilitate selection of the most predictive clearance prediction tool

EC3S – Hepatic clearance IVIVE

Mechanism: In vitro assay:

sinusoidal influx/efflux suspended hepatocytes (SHH)

metabolism liver microsomes (HLM), hepatocytes (HH)

biliary secretion sandwich-cultured hepatocytes (SCH)

Extended Clearance Model (ECM) HLM, SHH, SCH

plasma protein binding ultrafiltration, ultracentrifugation or or equilibrium-dialysis

$$CL_{\text{int},all} = CL_{met,u}$$

HH, HLM

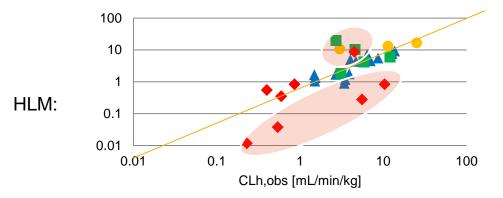
$$CL_{h} = Q_{h} \cdot E_{h} = \frac{Q_{h} \cdot f_{u,b} \cdot CL_{\text{int},all}}{Q_{h} + f_{u,b} \cdot CL_{\text{int},all}}$$

$$CL_{\text{int,all}} = \frac{PS_{\text{inf}} \times (CL_{\text{sec,u}} + CL_{met,u})}{PS_{\text{inf,pas}} + (CL_{\text{sec,u}} + CL_{met,u})}$$

ECM

$$CL_{\text{int},all} = PS_{\text{inf}}$$

SHH

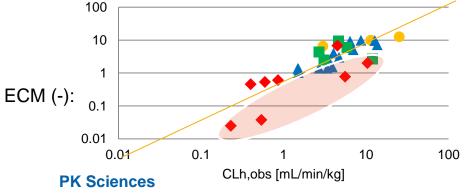

$$CL_{\text{int,all}} = \frac{PS_{\text{inf}} \times CL_{met,u}}{PS_{\text{inf,pas}} + CL_{met,u}}$$

ECM (-)

→ Expectation: different outcomes depending on rate-limiting clearance mechanism (EC3S class-dependent)

EC3S – Hepatic clearance IVIVE

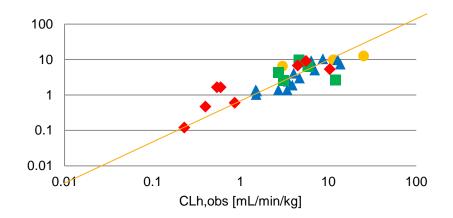
$$CL_{\text{int,all}} = CL_{met}$$


- → Class 2 generally well predicted
- → Often under-predictive for class 4
- → Tendency for being over-predictive for class 1 and class 3

$$CL_{intall} = PS_{inf}$$

- → Class 1 and class 3 generally well predicted
- → Over-predictive for some class 2 and class 4 cpds

$$CL_{\text{int,all}} = \frac{PS_{\text{inf}} \times CL_{met}}{PS_{\text{inf,pas}} + CL_{met}}$$


- → Class 1, class 3 and class 2 generally well predicted
- → Under-predictive for some class 4 cpds

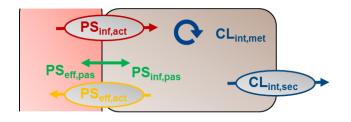
EC3S – Hepatic clearance IVIVE

$$CL_{\text{int,all}} = \frac{PS_{\text{inf}} \times (CL_{\text{sec}} + CL_{\text{met}})}{PS_{\text{eff}} + (CL_{\text{sec}} + CL_{\text{met}})}$$

→ Predictive for all EC3S classes

IVIVE recommendations:

- HH is the method of choice for IVIVE of EC3S class 1 cpds
- HLM or HH is the method of choice for IVIVE of EC3S class 2 cpds
- SHH is recommended for EC3S class 3 cpds (HH is the best alternative)
- **ECM** is needed for EC3S **class 4** cpds (no real alternative available)



EC3S – Total Clearance IVIVE

Estimation of fractional hepatic elimination

Total drug clearance (CL_{tot})

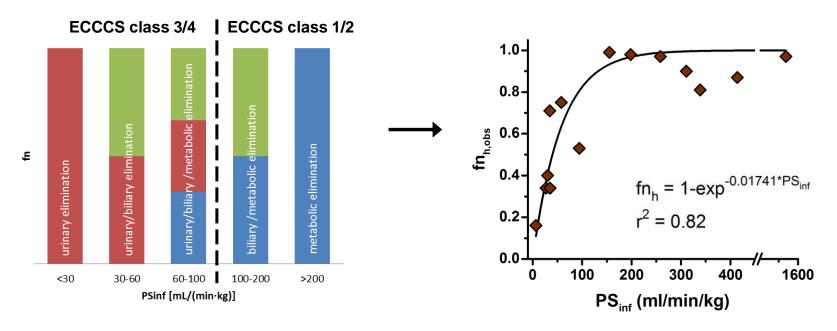
= hepatic drug clearance (CL_h) + renal drug clearance (CL_{ren})

Extended Clearance Model

?

no appropriate renal in vitro model available

→ Is it possible to estimate relative contributions of hepatic (fn_h) and non-hepatic elimination pathways?


$$CL_{tot} = \frac{CL_h}{fn_h}$$

EC3S - Total Clearance IVIVE

Estimation of fractional hepatic elimination

Observation: hepatic uptake permeability correlates with elimination pathway

$$1 = fn_{ren} + fn_{sec} + fn_{met}$$

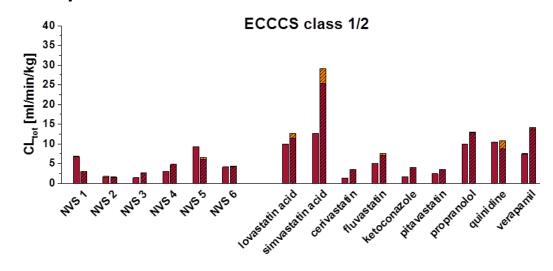
$$fn_h$$

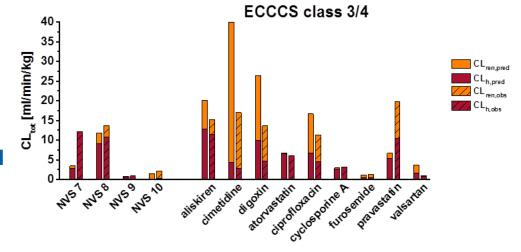
Camenisch et al, 2015, ADMET&DMPK; 3:1-14 Riede et al, 2016, Eur J Pharm Sci;86:96-102.

EC3S - Total Clearance IVIVE

Estimation of fractional hepatic elimination

ECCCS class 1/2:

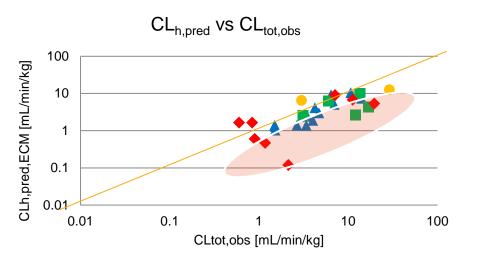

hepatic drug elimination

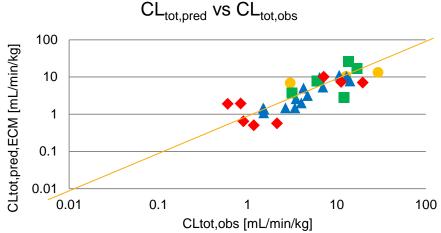

$$CL_{tot} = \frac{CL_h}{fn_h}$$

ECCCS class 3/4:

hepatic and **renal** drug elimination

→ Accurate prediction of total drug clearance independent of elimination pathways





EC3S - Total Clearance IVIVE

Estimation of fractional hepatic elimination

Prediction of total human clearance

- 1) f_{n,h} estimated from PS_{inf,pas}
- 2) CL_{tot} calculated with : $CL_{tot,pred} = CL_{h,pred} / f_{n,h,pred}$

(assuming absence of other elimination routes)

Applications for drug classification

Guidance for the drug development process

- What is the recommendation with regards to metabolism investigations (in vivo or in vitro)?
- What is the most appropriate clearance prediction tool for IVIVE?
- Are there opportunities to waive any animal studies (e.g. bile-duct cannulation studies)?
- What is the potential leverage with regards to in silico PK work?
- Is it recommended to synthesize a radiolabel in an early development phase?
- Which DDI follow-up studies (cpd as perpetrator vs victim) are recommended?

Applications for drug classification

	BDDCS	ECCS	EC3S
IVIVE		- Varma et al, Pharm Res (2015)	 Umehara and Camenisch, Pharm Res (2012) Camenisch and Umehara, Biopharm Drug Dispo (2012) Riede et al, Eur J Pharm Sci (2016)
Elimination Mechanism	- Hosey et al, The AAPS Journal (2016)	Varma et al, Pharm Res (2015)El Kattan et al, Pharm Res (2016)	- Riede et al, Eur J Pharm Sci (2016)
DDI	 Shugarts and Benet, Phar Res (2009) 	- El Kattan et al, Pharm Res (2016)	 Kunze et al, Drug Metab Pers Ther (2015)
Kp _{uu}			 Riede et al, Drug Metab Dispos (2017)
Food effect	Custodio et al, Adv DrugDeliv Rev (2008)Himbach et al, The AAPSJournal (2012)		

Summary

- All compound classification systems provide information on drug disposition and the interplay between metabolic enzymes and transporters.
- ECCs and EC3S use *in vitro* data only. BDDCS requires information of a clinical dose and may therefore be positioned at a later stage in the drug development process.
- EC3S provides directly enables quantitative estimates of hepatic clearance and disposition processes given the required *in vitro* parameters are generated.
- All three classification systems may facilitate the compound classdependent drug development process by guiding the selection of the most appropriate in vitro and in vivo studies

Acknowledgments

- Gian Camenisch
- Dallas Bednarczyk
- Sujal Deshmukh
- Bernard Faller
- Imad Hanna
- Anett Kunze
- Julia Riede
- Patrick Schweigler
- Kenichi Umehara

Thank you for your attention

