

Organoid platform for modeling the blood-brain-barrier

Transporter Conference 2019

Choi-Fong Cho, Ph.D.

ccho@bwh.harvard.edu

Blood Brain Barrier (BBB)

BBB:

- Protects brain from harmful substances.
- Estimated 98% of drugs cannot cross the BBB.
- <u>Clinical need:</u> Brain therapeutics that can overcome the BBB.

Models to study BBB

Trans-well (static) model

- 2D in vitro BBB model.
- Mid-throughput
- Monolayer of cells dedifferentiation and loses BBB properties.
- Failure to account of cell-cell interactions.

Dynamic BBB model and microfluidic systems

- 3D Account for cell-cell interaction, blood flow, shear stress.
- Low throughput.
- Technically demanding

Transwell model: Imperfect barrier formation

- Transwell was first developed in 1983.
- Imperfect EC monolayer across the filter.
- Areas consisting multiple layers of ECs.
- Holes in the monolayer.

Ann Neurol 14:396-402, 1983

Brain Microvessel Endothelial Cells in Tissue Culture: A Model for Study of Blood-Brain Barrier Permeability

Phillip D. Bowman, PhD,* Steven R. Ennis, PhD,* Kyle E. Rarey, PhD,†
A. Lorris Betz, MD, PhD,* and Gary W. Goldstein, MD*

Mini Review

Diána Hudecz, Louise Rocks, Laurence W. Fitzpatrick, Luciana-Maria Herda and Kenneth A. Dawson*

Reproducibility in biological models of the blood-brain barrier

BBB organoids

Triple co-culture of Astrocytes, Pericytes, Endothelial cells

a. HBMEC (Primary)

Astrocytes HBVP 100 100 100 HBMEC

hCMEC/D3 (Immortalized)

Advantages:

- 3D in vitro multicellular BBB spheroids.
- Accounts for cell-cell interactions.
- High-throughput.
- Cost-effective.
- Easily reproducible (spheroid formation: 90% success rate).

Cho et al. Nat Comm (2017)

Culture of organoids

- 1 spheroid per well
- Low-adherence condition (agarose coated well)
- Can be pooled together for experiments

Disruption of tight junctions increases spheroid permeability to dextran

Paracellular pathway

Disruption of tight junctions increases spheroid permeability to dextran

Disruption of tight junctions with VEGF increases dextran permeability

Efflux pump (P-glycoprotein) in BBB spheroid

BLOOD

Anti-P-gp IgG

Secondary IgG only control

Rhodamine-123: Substrate of P-gp

Inhibition of P-gp promotes entry of Rhodamine-123 into spheroid

Receptor-mediated transcytosis: Angiopep-2

BLOOD

Receptor-mediated transcytosis: Angiopep-2

No Primary IgG

LRP-R

- High LRP-1 receptor expression.
- Angiopep-2, known BBBpenetrating ligand of the LRP-1 receptor.
- High angiopep-2 permeability observed.

Angiopep-2

Scramble-Angio

Fluores. Dextran

Quantification of angiopep-2 permeability

High permeability of angiopep-2 in BBB organoids that exclude dextran

Receptor-mediated transcytosis in mouse brain: Angiopep-2 vs. scramble peptide

Mass Spectrometry Imaging: Small molecule detection

BKM-120 and Dabrafenib do not disrupt BBB integrity:

Dextran influx

- **BKM-120**: BBB-penetrant drug
- <u>Dabrafenib</u>: Non-penetrant (control) drug

Detection of BKM-120 in BBB spheroids

Comparison with well-known Transwell model

Transwell Model

35007 Scramble peptide 3000-Angiopep-2 2500n.s. 2000-1500-1000-500-10 15 20 25 30 35 5 0 Time (hrs)

BBB Organoid Model

BBB characteristics: Spheroids vs. Transwell Model

CPP screen using BBB spheroids

Analysis of top CPPs

Co-incubation of CPP and dextran

Engrailed-2 promoted influx of dextran
→ Indication of barrier disruption?

BBB-penetration in vivo

- I.V. administration of **CPP**
- I.V. administration of dextran

BBB spheroids as drug screening tool:

Chemically modify drugs to enhance BBB permeability?

Pentelute Lab: JACS, 2013, 135 (16): 5946-9

Peptide stapling enhances cell binding and permeability

TP10 Analogues

Stapling TP10 (M13) enhances brain delivery

M13-cisplatin conjugate

Fadzen et al. J Med Chem (2019); in revision

Summary

- 1. "BBB organoids" as <u>next-generation analysis tool</u> for brain-penetrating agents.
- 2. Organoids reproduce
 essential BBB properties
 and functions compared to widely-used transwell system.
- 3. Development of <u>BBB-</u>
 <u>penetrating peptides and</u>
 <u>therapeutics</u>.

BWH/Harvard Medical School

<u>Dept. of Neurosurgery:</u>

- E. Antonio Chiocca, MD/PhD
- Sean Lawler, PhD
- Nathalie Agar, PhD
- Niklas von Spreckelsen, MD
- Yuan Qu, MD
- David Calligaris, PhD
- Kalvis Hornburg
- Sonja Bergmann
- Michael Regan

MIT, Dept of Chemistry:

- Bradley Pentelute, PhD
- Nina Hartrampf
- Justin Wolfe
- Colin Fadzen

Sources of Funding:

- Canadian Institute of Health Research
- Harvard NeuroDiscovery Center
- Women's Brain Initiative
- Connors Center
- BWH Program in Precision Medicine
- Brigham Research Institute
- Department of Defense