Protein Binding Methodologies and Relevance for DDI - An Industry Perspective

Li Di, Ph.D.

Pfizer Inc., Groton, CT

Solvo Symposium, September, 2019

Concerns of Regulatory Agencies on PPB in DDI Prediction

- Set a lower limit of PPB f_u to 1% for DDI
- If experimental $f_u < 1\%$, the cutoff f_u value of 1% should be used for DDI prediction
- On top of the 10- or 50-fold safety margin

J Pharm Sci, 2017, 106(12): 3442-3452

J Pharm Sci, 2019, Online

Regulatory DDI Draft Guidelines on Plasma Protein Binding

FDA DDI Draft Guideline (2017)

 $I_{max,u}$

*Considering uncertainties in the protein binding measurements, the unbound fraction in plasma should be set to 1% (fraction unbound in the plasma $(f_{u,p}) = 0.01$) if experimentally determined to be < 1%.

EMA DDI Draft Guideline (2012)

Hepatic (and renal) exposure

If the enzyme studied is mainly available in the liver, or the kidney/another organ with main drug input from the systemic circulation, the concentration range should allow determination of a Ki which is \leq 50-fold the mean unbound Cmax obtained during treatment with the highest dose. In this estimation, when an estimation of fu is used, figures lower than 1% should not be used due to the uncertainties in the estimation. Thus, as an example, if the free fraction has been estimated to be 0.5% in vitro or ex vivo, 4 1% free fraction should be used.

<u>Japanese DDI Draft Guideline (PMDA)</u> (2014)

maximum total blood concentration (unbound + bound forms) of the inhibitor in the steady state When the protein binding ratio in blood is high (99% or higher), making measurement

difficult, $f_{u,b} = 0.01$ should be used. [I]_g may also be estimated with the equation [I]_g = $F_a \times k_a$

Rationales of Setting 1% f_u Cutoff

- Perceived uncertainties in measuring f_u values of highly bound compounds
- Historically sub-optimal methods
 - Purity of radio-labeled materials in radiometric methods
 - Ultrafiltration (high nonspecific binding)
- Err on the conservative side for DDI prediction to avoid false negatives

J Pharm Sci, 2017, 106(12): 3442-3452. J Pharm Sci, 2019, Online

Example for Renal Transporter DDI

- EMA DDI guideline to predict OAT1/3 DDI risk (DDI risk if $K_i \le 50$ -fold $C_{\text{max.u}}$)
 - $f_u = 0.008$, no DDI risk
 - $f_u = 0.01$, potential DDI risk
- AUCR calculation (mechanistic model): negligible (~1). Clinically relevant DDI was not predicted.
- Assessor disagreed and potential DDI with OAT1 and OAT3 substrates was included on the label.

1% f_u cutoff predicts higher DDI risk for highly bound compounds

Mol Pharm, 2013, 10, 4207-4215. J Pharm Sci, 2017, 106(12): 3442-3452.

Example for OATP1B1 DDI Prediction

OATP1B1 IC ₅₀ (μM)	f _u Measured	R-value Predicted with lower limit f _u of 0.01	R-value Predicted with Measured f _u	Observed Clinical DDI (AUC fold)
0.17	0.002	6.1	2.0	1.8

R =1+
$$((f_{u,p} \times I_{in,max})/IC_{50}) \ge 1.1$$

 $I_{in,max} = (I_{max} + (F_aF_g \times k_a \times Dose))/Q_h/R_B$

 Using f_u 1% cutoff overpredicts clinical DDI for highly bound compounds

J Pharm Sci, 2017, 106(12): 3442-3452.

Implications of Setting Lower Limit of fu to 1%

Inhibition of 3A, Midazolam

- Cause overprediction of DDI
- Lead to unnecessary and expensive clinical studies
- More stringent inclusion / exclusion criteria
- 1% f_u cutoff is somewhat arbitrary and unscientific

Plasma Protein Binding Methods

- Equilibrium dialysis (IQ survey: 13 companies/14)
- Ultracentrifugation
- Ultrafiltration
- Equilibrium Gel Filtration
- Transil®
- HSA/AAG columns
- Off rate measurement (Biacore, charcoal)

J Pharm Sci, 2017, 106(12): 3442-3452.

Challenging Compounds for PPB

- Lipophilic acids
 - Liver targeting compounds
- Lipophilic insoluble compounds
 - Itraconazole, Amiodarone
- Large molecules (high MW)
 - Peptides, oligonucleotides
- Unstable compounds
 - ADC (Antibody Drug Conjugates), prodrugs

Precision of PPB: Intra-day Variability

Precision of PPB: Inter-day Variability

Inter-day precision is consistent (6-11%) between high and low binding compounds

f_u range: 0.0003 - 1

J. Pharm. Sci., 2015, 104(8):2627-36

SCIENCE IMPACT

Precision of f_u Measurement

- CVs (coefficients of variation) are similar between highly bound and weakly bound compounds
- No bias of f_u values being more variable for highly bound compounds than weakly bound ones

Factors Governing PPB Precision

- Reproducibility of liquid transfer
- Reagent consistency
 - Plasma, pH, buffer
- Experimental conditions
 - Incubator temperature and humidity
 - Shaker speed
- Analytical sensitivity

Time to Equilibrium in RED

Standard protocol: 4 hour incubation *RED = Rapid equilibrium dialysis device

Waters NJ, et al. J.Pharm.Sci. 2008, 97:4586-4595.

Time to Equilibrium

It takes longer for challenging compounds to achieve equilibrium (high MW, low f₁₁, high nonspecific binding)

Schematic of Plasma Protein Binding Methods

Dilution Dilution 18-24 h

Pre-incubate device with compound

J Pharm Sci, 2017, 106(12): 3442-3452.

SCIENCE FOR IMPACT

Itraconazole - Method Comparison

Method	f _u ± SD (Human Plasma)
Standard RED	Not Measurable
Dilution Method	0.0020 ± 0.0002
Pre-saturation Method	0.0021 ± 0.0004
Literature	0.0020

F_u of Itraconazole and Metabolites

Compounds	MW	Log P	f _u	% CV
Itraconazole	706	7.13	0.0020	9.4
Hydroxy-Itraconazole	722	6.11	0.017	14
Keto-Itraconazole	720	5.60	0.010	12
N-Desalkyl-Itraconazole	650	5.75	0.011	13

J. Pharm. Sci., 2015, 104(8):2627-36

Amiodarone – Method Comparison

Method	f _u (Human Plasma)
Standard RED	Not Measurable
Dilution Method	0.00014 ± 0.00002
Pre-saturation Method	0.00021 ± 0.00006
Literature	0.0002

Major Plasma Proteins

- Human Serum Albumin (HSA)
 - $-600 \,\mu\text{M}$
 - At least 6 primary binding sites with high affinity
 - A large number of secondary binding sites with low affinity
 - Binds to acids, bases and neutrals
- α1-Acid Glycoprotein (AAG)
 - $-20-30 \,\mu\text{M}$
 - Acute phase protein: $10-100 \mu M$
 - Up to 7 binding sites
 - Binds to bases, also neutrals and acids

Effect of AAG Concentration and Number of Binding Sites on f₁₁ Determination

UCN-01 – Method Comparison

MW 483 Log P: 2.76

Method	f _u (Human Plasma)
Standard RED	Not Measurable
Dilution Method	0.0019 ± 0.0002
Pre-saturation Method	0.0013 ± 0.0003
Literature	0.0022

Orthogonal Methods for Highly Bound Compounds

- Equilibrium dialysis
 and
 ultracentrifugation
 gave similar f_u
- F_u of highly bound compounds can be measured accurately
- Measured f_u values should be used for DDI prediction

IQ Human Plasma f_u for Warfarin and Itraconazole

Companies	(±) Warfarin f _u
а	0.017
b	0.013
c-1	0.008
c-2	0.005
d-1	0.018
d-2	0.013
e-1	0.008
e-2	0.013
f	0.0097
g	0.0092
h	0.009
I-1	0.010
I-2	0.010
Mean	0.011
% CV*	30

Companies	Itraconazole f _u
а	0.0016
b	0.0020
С	0.0010
d	0.0017
е	0.0016
f	0.0014
g	0.0022
h	0.0015
1	0.0017
J	0.0007
.,	0.0005 (undiluted),
K	0.0013 (diluted)
Mean	0.0015
% CV*	31

Pfizer WORLDWIDE RESEARCH & DEVELOPMENT

J Pharm Sci, 2017, 106(12): 3442-3452. SCIENCE IMPACT

Plasma Protein Binding of Unstable Compounds

- Enzymatic hydrolysis
- pH instability
- Light sensitivity
- Chiral conversion

Stabilize compounds before measuring PPB

Hydrolase Inhibitors to Stabilize Prodrug

Species	Inhibitor	f _u (%CV)
	None	0.21 (13%)
Human	AEBSF	0.24 (3%)
	PMSF	0.28 (15%)
D _a +	AEBSF	0.26 (10%)
Rat	PMSF	0.26 (5%)

AEBSF 2 mg/mL, PMSF 2 mM

Ensure inhibitors do not interfere with PPB

J Pharm Sci, 2017, 106(12): 3442-3452.

No Effects of Temperature of fu

- Plasma protein binding and liver binding are similar at 37°C and 4°C
- Binding at 4°C can be used to measure PPB for unstable compounds

PPB Methods for Highly Bound Compounds

Conclusions

- Setting 1% reportable lower limit of PPB is overly conservative and can lead over-prediction of DDI
- PPB below 1% can be measured accurately when appreciate assay conditions are used and these values should be used for DDI prediction
- New methodologies continue to evolve to address challenging compounds (highly bound, unstable)