Studying disposition of uremic waste products: can we develop novel therapeutic strategies to treat chronic kidney disease?

Roos Masereeuw, div. Pharmacology Utrecht Institute for Pharmaceutical Sciences, NL

27 April 2018

Chronic kidney disease

Renal xenobiotic excretion by filtration and secretion

Dialysis clearance is limited for protein-bound uremic toxins

Davenport. Kidney Int. 2017 Sirich *et al.* Kidney Int. 2017

Renal xenobiotic excretion

Renal xenobiotic excretion

Chronic kidney disease: uremic toxins

Classification:

- Small water-soluble compounds (< 500 Da)
- Middle molecules (> 500 Da)
- Protein-bound compounds
 e.g. phenols and indoles

Pathologies

- Renal fibrosis
- Cardiovascular complications
- Cognitive disorders
- •

Meijers & Divisime post Weplanol SD ial Nepamop 202011

Renal uremic toxin handling

Regenerative medicine

Tissue Engineering

Regenerative Medicine

Biomaterials

Stem Cell Therapy

Bioartificial kidney development

Bioartificial kidney

A unique human renal cell line: ciPTEC

Conditionally Immortalized Proximal Tubular Epithelial Cell (ciPTEC)

■ Immortalization:

- 1. SV40T tsA58 U19
- 2. hTERT

Renal xenobiotic transporters for uremic toxins

Proximal tubule cell OCT2 transport

Guanidines inhibit the OCT2 transporters at high doses

Bioartificial kidney development: living membranes

Collagen IV

L-Dopa

Coated membrane

Uncoated membrane

Bioengineered kidney tubules

ZO-1

Nucleus

OCT2

PTEC with intact organelle morphology on hollow fibers

Functional imaging of bioengineered kidney tubules

Functional imaging of bioengineered kidney tubules

Bioengineered kidney tubules for renal excretion

Transepithelial transport of indoxyl sulfate

Biokid-current status and future perspectives

- After optimized coating, ciPTEC can grow on hollow fibers and remain functional, and allow for kinetic studies
- Investigate (pre-)clinical safety

ciPTEC immunogeneic response

ciPTEC immunogeneic response

PBMC proliferation

non activated PBMC

activated PBMC

ciPTEC immunogeneic response

Direct ciPTEC-PBMC co-culture: PBMC proliferation

Biokid-current status and future perspectives

- After optimized coating, ciPTEC can grow on hollow fibers and remain functional, and allow for kinetic studies
- Proven in vitro safety
- Demonstrating function in upscaled device

Collaboration UTwente

HFM length: 8.5 ± 0.5 cm

Surface: 4.01 ± 0.25 cm²

Collaboration UTwente

Blue: DAPI (Nuclei)

Red: Alexa Fluor 568 (ZO-1)

Collaboration UTwente

Response to LPS and IFN-γ in modules

Intraluminal exposure

Extraluminal exposure

LPS (~ 10-20 kDa)

IL-8 (~ 11 kDa)

IL-6 (~24-25 kDa)

TNF-alpha (~25-26 kDa)

Collaboration UTwente

Biokid-current status and future perspectives

- After optimized coating, ciPTEC can grow on hollow fibers and remain functional, and allow for kinetic studies
- Proven in vitro safety
- Function in upscaled device demonstrated
- Future studies directed towards in vivo safety and efficacy
- Extra-corporal -> implantable

Acknowledgements

Div. Pharmacology

Jitske Jansen

Katja Jansen

Manoe Janssen

Michele Fedecostante

Milos Mihajlovic

Koen Westphal

Paul Jochems

Anne Metje van Genderen

Johan Garssen

Amer Jamalpoor

Silvia Mihaila

Div. Pharmaceutics

Tina Vermonden

Carl Schuurmans

Biofabrication Utrecht

Jos Malda

Miguel Dias Castilho

Faculty Veterinary Med.

Bart Spee

Niels Geijsen

Chen Chen

Radboudumc

Dept. Pharmacology and Toxicology

Tom Nieskens

Janny Peters

Martijn Wilmer

Dept. Physiology

Joost Hoenderop

Dept. Pediatrics

Bert van den Heuvel

Dept. Nephrology

Luuk Hilbrands

Universiteit Twente

Dimitrios Stamatialis

Ilaria de Napoli

Natalia Chevtchik

Acknowledgements

