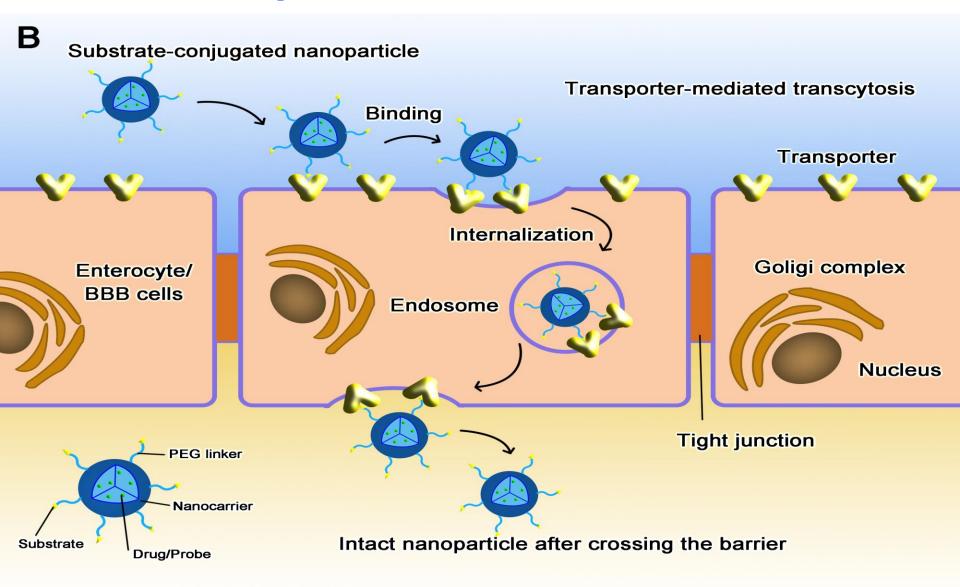

## Improvement of Nanoparticle Drug Delivery by Surface Conjugation with L-carnitine: Role of OCTN2/SLC22A5 and ATB<sup>0,+</sup>/SLC6A14

Vadivel Ganapathy, Ph. D. Department of Cell Biology and Biochemistry Texas Tech University Health Sciences Center Lubbock, TX, USA


#### Development of nano-drug delivery systems



#### **Tumor-selective delivery of nanoparticles**



# Transporter-assisted delivery of nanoparticles across the BBB



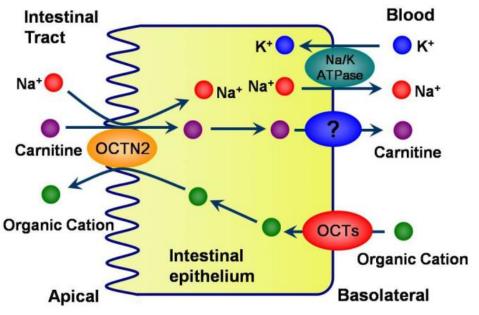
# Transporter-targeted nanoparticles for enhanced BBB permeation and glioma targeting

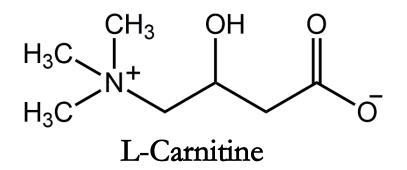
Table 1. Transporter-targeted nanoparticles to enhance blood-brain barrier permeation and increase glioma targeting for optimal anti-glioma therapy.

| Transporter | Gene    | Substrate               | Carrier       | Drug                       | Ref.                     |
|-------------|---------|-------------------------|---------------|----------------------------|--------------------------|
|             |         | 2-deoxy-D-glucose       | nanoparticles | Paclitaxel                 | (Jiang et al.,<br>2014b) |
| GLUT1       | SLC2A1  | D-glucosamine           | nanoparticles | Paclitaxel                 | (Jiang et al., 2014a)    |
|             |         | dehydroascorbic<br>acid | Micelles      | Paclitaxel                 | (Shao et al., 2014)      |
|             |         |                         | Dendrimers    | Plasmid DNA                | (Li et al., 2011)        |
|             |         |                         | Dendrimers    | DTPA-Gd                    | (Li et al., 2013b)       |
| ChT1        | SLC5A7  | Choline derivate        | Micelles      | Doxorubicin/Plasmid<br>DNA | (Li et al., 2013a)       |
|             |         |                         | Micelles      | Doxorubicin                | (Li et al., 2015)        |
| LAT1        | SLC7A5  | Glutamate               | Liposomes     | Docetaxel                  | (Li et al., 2016)        |
| SVCT2       | SLC23A2 | Vitamin C               | Micelles      | Rhodamine                  | (Salmaso et al., 2009)   |

#### Transporter-targeted nanoparticles for site-specific absorption

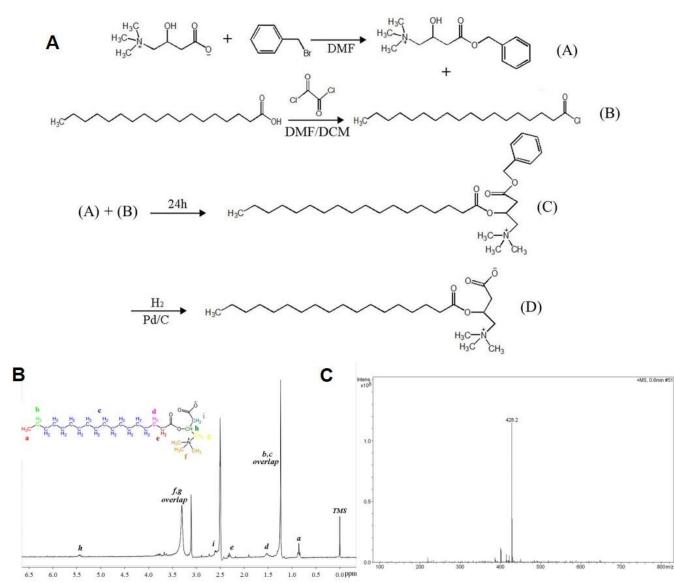
| Transporter        | Gene    | Substrate             | Carrier                        | Drug                                   | Site                                      | Ref.                                                                    |                                   |                       |
|--------------------|---------|-----------------------|--------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|-----------------------|
| GLUT1              | SLC2A1  | 2-deoxy-D-<br>glucose | DMSA-DG NPs                    | γ-Fe <sub>2</sub> O <sub>3</sub>       | Tumor                                     | (Shan et al., 2012)                                                     |                                   |                       |
| GLUTT              | 5LC2/11 | Glucose               | Nanoparticles                  | Coumarin 6                             | Brain                                     | (Xie et al.,<br>2012)                                                   |                                   |                       |
| GLUT4              | SLC2A4  | Glucose               | Quantum dots                   |                                        | Muscle                                    | (Yeh et al.,<br>2014)                                                   |                                   |                       |
|                    |         |                       | Dendrimer                      | FITC                                   | Tumor                                     | (Yang et<br>al., 2009;<br>Yellepeddi<br>et al.,<br>2009)<br>(Yellepeddi |                                   |                       |
|                    |         |                       | Dendrimer                      | Cisplatin                              | Ovarian cancer                            | et al.,<br>2011)                                                        |                                   |                       |
|                    | SLC5A6  | A6 Biotin             | Pullulan acetate nanoparticles | Doxorubicin                            | Tumor                                     | (Na et al., 2003)                                                       |                                   |                       |
| SMVT               |         |                       | Polymer<br>micelles            | Doxorubicin                            | Tumor                                     | (Kim et al., 2012)                                                      |                                   |                       |
|                    |         |                       | Erythrocytes                   | Methotrexate                           | Liver                                     | (Mishra<br>and Jain,<br>2002)                                           |                                   |                       |
|                    |         |                       | Cubosomes                      | Paclitaxel, MO-<br>Fluo                | Tumor                                     | (Aleandri<br>et al.,<br>2015)                                           |                                   |                       |
|                    |         |                       |                                | Polyurethane-<br>urea<br>nanoparticles | Sunitinib/<br>phenoxodiol,<br>plasmid DNA | hepatocellular<br>carcinoma                                             | (Morral-<br>Ruíz et al.,<br>2015) |                       |
| <b>4 TD</b> () +   | SLC6A14 |                       |                                | Lysine                                 | Liposomes                                 | Docetaxel                                                               | Liver cancer                      | (Luo et al.,<br>2016) |
| ATB <sup>0,+</sup> |         | Aspartate             | Liposomes                      | Docetaxel                              | Lung cancer                               | (Luo et al.,<br>2017)                                                   |                                   |                       |
| LAT1               | SLC7A5  | Glutamate             | Nanoparticles                  | Paclitaxel                             | Breast cancer                             | (Li et al.,<br>2017)                                                    |                                   |                       |
| MCT1               | SLC16A1 | β-<br>hydroxybutyrate | Solid lipid nanoparticles      | Docetaxel                              | Brain                                     | (Venishetty<br>et al.,<br>2013)                                         |                                   |                       |


| Table 2   | Transmontan  | tongatad      | manantialas   | for increased | aita anaaifia | absorption |
|-----------|--------------|---------------|---------------|---------------|---------------|------------|
| I able 2. | Transporter- | -largeleu     | nanoparticles | for increased | site-specific | absorption |
|           | 1            | $\mathcal{O}$ | L L           |               | 1             | 1          |


#### Transporter-targeted nanoparticles for enhanced oral absorption

| Transporter | Gene    | Substrate           | Carrier                   | Drug         | Ref.                                                    |
|-------------|---------|---------------------|---------------------------|--------------|---------------------------------------------------------|
| SMVT        | SLC5A6  | Biotin              | Conjugates                | Peptide      | (Ramanathan et al., 2001a;<br>Ramanathan et al., 2001b) |
|             |         |                     | Conjugates                | Camptothecin | (Minko et al., 2002)                                    |
|             |         |                     | Liposomes                 | Insulin      | (Zhang et al., 2014)                                    |
|             |         |                     | Solid lipid nanoparticles | Oridonin     | (Zhou et al., 2015)                                     |
| ASBT        | SLC10A2 | Deoxycholic<br>acid | Conjugates                | LMWH         | (Lee et al., 2001; Lee et al., 2006; Kim et al., 2007)  |
|             |         | Deoxycholic<br>acid | Conjugates                | Insulin      | (Lee et al., 2005a)                                     |
|             |         | TetraDOCA           | Conjugates                | LHT7         | (Alam et al., 2014)                                     |
|             |         | Taurocholic<br>acid | Micelles                  | Docetaxel    | (Khatun et al., 2013)                                   |

#### **Table 3.** Transporter-targeted nanoparticles for enhanced oral absorption


#### OCTN2/SLC22A5





- Advantages of OCTN2 as a target for oral delivery
- Wide absorption window (small intestine and colon)
  - Na-coupled and active
  - L-Carnitine is easy to link

#### **L-Carnitine-conjugated NPs**



- ) Synthetic route of stearoyl-L-
- carnitine
- Characterization of stearoyl-L
  - carnitine by <sup>1</sup>H NMR spectrum in CDCl<sub>3</sub>;
- Characterization of stearoyl-Lcarnitine by MS.

#### **L-Carnitine-conjugated NPs: Characteristics**

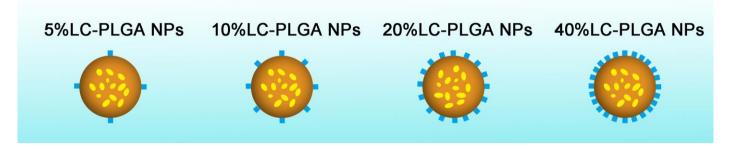
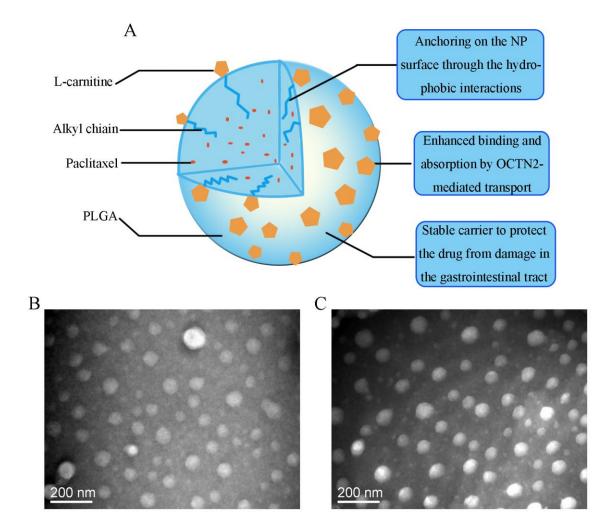
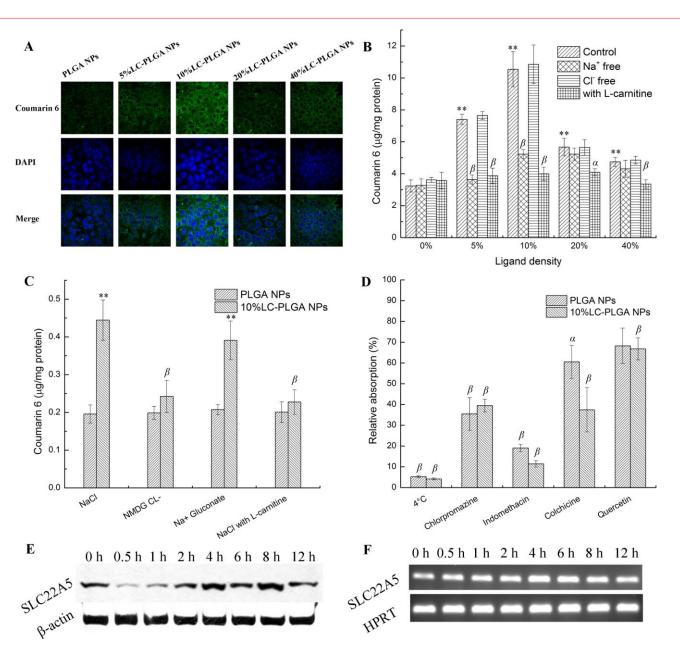



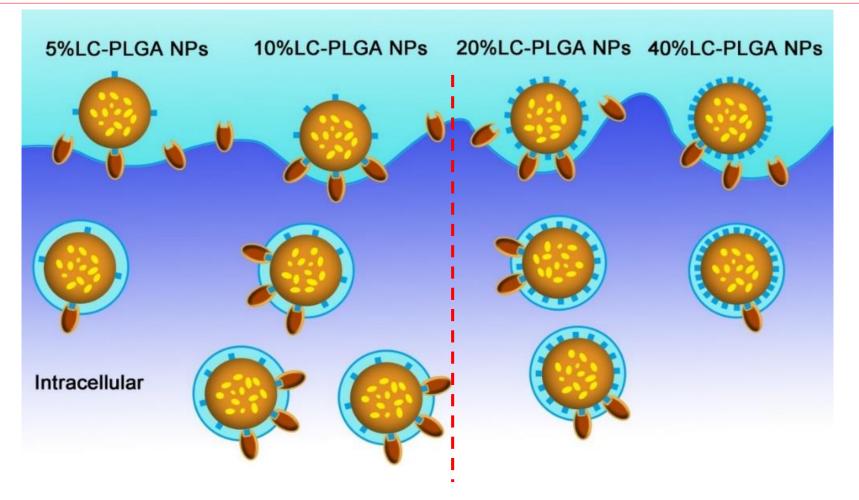

Table 1-1. Physicochemical characterization of LC-PLGA NPs.


| nanoparticles  | Size (nm)   | PDI               | Zeta potential   | EE%      | DL%       |
|----------------|-------------|-------------------|------------------|----------|-----------|
| nanoparticies  | Size (IIII) |                   | (mV)             |          |           |
| PLGA NPs       | 211.3±1.4   | 0.079±0.029       | -4.42±0.70       | 91.4±3.2 | 4.35±0.15 |
| 5%LC-PLGA NPs  | 201.1±4.4   | $0.101 \pm 0.047$ | $-0.99 \pm 0.08$ | 98.8±2.8 | 4.70±0.13 |
| 10%LC-PLGA NPs | 197.5±5.4   | 0.175±0.021       | -0.36±0.08       | 98.0±1.6 | 4.67±0.08 |
| 20%LC-PLGA NPs | 205.0±2.7   | $0.076 \pm 0.048$ | -0.57±0.15       | 77.8±0.1 | 3.71±0.00 |
| 40%LC-PLGA NPs | 202.2±2.5   | 0.161±0.024       | 1.33±0.34        | 71.8±2.0 | 3.42±0.09 |

### **L-Carnitine-conjugated NPs: Characteristics**

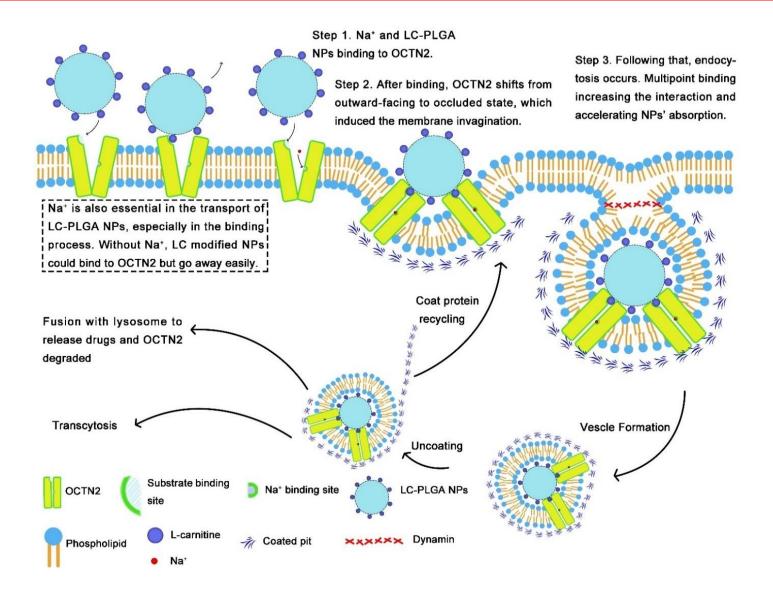


Schematic illustration of paclitaxel-loaded LC-PLGA NPs (A), and TEM images of PLGA-NPs (B) and LC-PLGA-NPs (C).

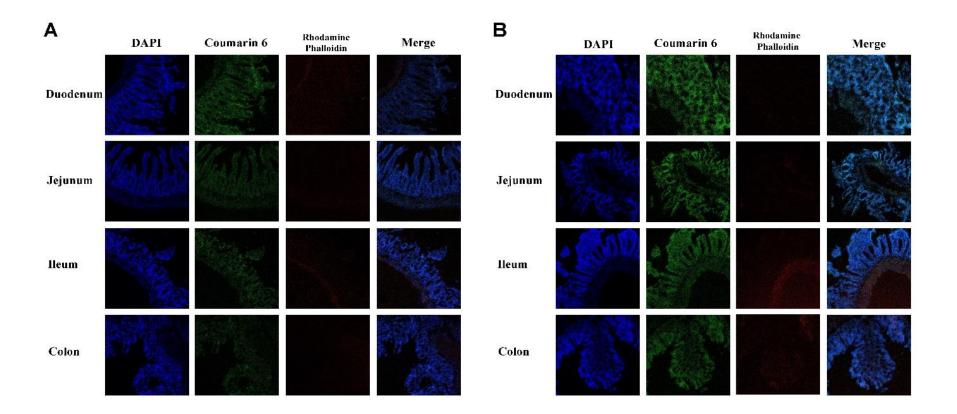

### L-Carnitine-conjugated NPs: Uptake in Caco-2 cells



#### Characteristics of nanoparticles uptake in Caco-2 cells. (A) Confocal microscope images of Caco-2 cells incubated with LC-PLGA NPs at 37 ° C for 1 h

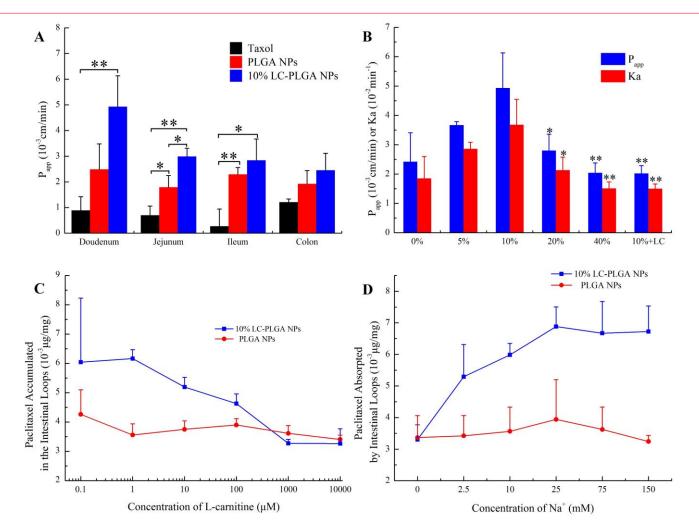

- (B) Uptake assay for LC PLGA NPs in different
   buffers in Caco-2 cells
- (C) Binding assay
- (D) Endocytosis study
- (E) Western bolt
- (F) RT-PCR study

### L-Carnitine-conjugated NPs: Influence of ligand density



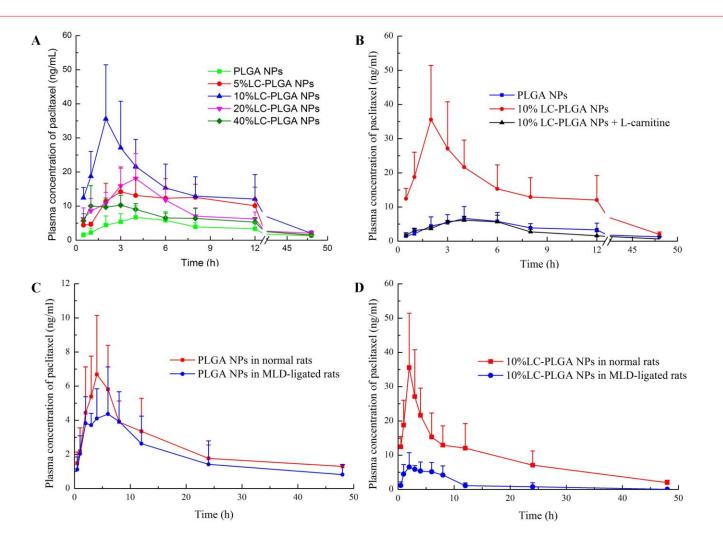

Effects of the ligand density on the nanoparticle absorption: when ligand density was low, the increased ligand density could enhance absorption; when ligand density was enough, the further increased ligand might inhibit the binding of nanoparticles to target site (too crowd).

### L-Carnitine-conjugated NPs: OCTN2-mediated entry into cells



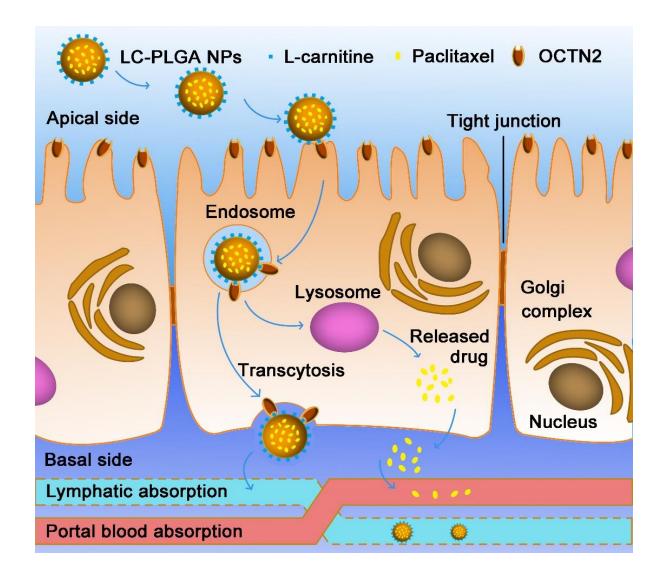

### L-Carnitine-conjugated NPs: Intestinal absorption




The fluorescence images of rat intestinal sections after oral administration of coumarin 6-loaded A) PLGA NPs and B) 10%LC-PLGA NPs. Blue: DAPI for nuclei, Green: coumarin 6, Red: rhodamine phalloidin for cytoskeleton.

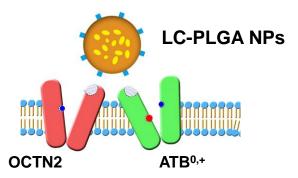
#### L-Carnitine-conjugated NPs: Intestinal permeability




(A) The intestinal permeabilities (Papp) different formulations; (B) The effect of surface density of L-carnitine conjugation on in situ intestinal absorption; (C) Influence of free L-carnitine on the absorption of LC-PLGA NPs in everted intestinal rings; (D) Influence of Na<sup>+</sup> on the absorption of LC-PLGA NPs in everted intestinal rings.

#### L-Carnitine-conjugated NPs: Intestinal absorption




Pharmacokinetic profiles of paclitaxel in rats after oral administration. (A)Plasma levels of paclitaxel following oral administration of LC-PLGA NPs; (B)Plasma levels of paclitaxel following oral administration of 10% LC-PLGA NPs with free L-carnitine; plasma concentration-time curves for paclitaxel in normal and MLD-ligated rats after oral administration of PLGA NPs (C) and 10% LC-PLGA NPs (D).

#### **L-Carnitine-conjugated NPs: Conclusions**



**Table 1**. The difference of OCTN2 and  $ATB^{0,+}$  in the transport of L-carnitine.

| Name                       | Gene    | Tissue expression                                   | Ion-<br>dependence  | K <sub>m</sub> (L-<br>carnitine) |
|----------------------------|---------|-----------------------------------------------------|---------------------|----------------------------------|
| OCTN2(human)               | SLC22A5 | Intestine, rain, heart,<br>kidney, liver, pancreas, | Na <sup>+</sup> -   | 4.3µM                            |
| octn2(mouse)               | slc22a5 | lung, thyroid, trachea, etc.                        | dependent           | 22.1 µM                          |
| ATB <sup>0,+</sup> (human) | SLC6A14 | Lung, hippocampus,<br>stomach, prostate, pituitary, | $Na^+$ and $Cl^-$ - |                                  |
| atb <sup>0,+</sup> (mouse) | slc6a14 | uterus, heart, colon, caecum                        | dependent           | 830 µM                           |

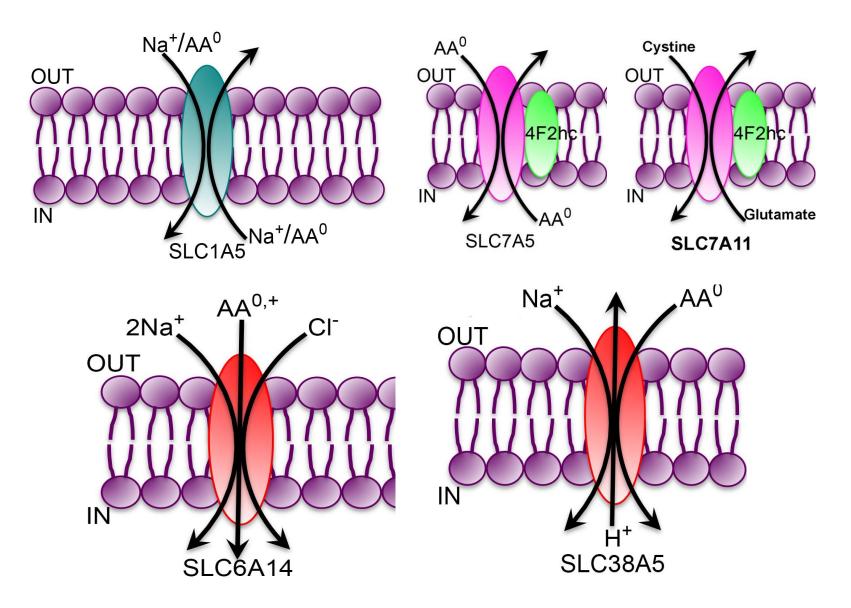


## **Amino acid nutrition in cancer**

- **Essential amino acids**
- Protein synthesis to promote cell proliferation
- Leucine
- A potent activator of mTORC1; Signaling of sufficient nutrition
- Promotion of protein synthesis and hence cell proliferation
- mTOR inhibitors in clinical use for cancer treatment

## Glutamine

- A critical amino acid for purine and pyrimidine synthesis
- The starting substrate for "glutaminolysis" unique to tumor cells
- ■Also an activator of mTORC1, though less potent than leucine
- Blockade of glutaminase inhibits tumor growth


## Serine, Glycine, Proline, and Asparagine

Promotion of tumor growth

# Amino acid transporters that are upregulated in cancer

- ■SLC1A5 (ASCT2)
- **Alanine-Serine-Cysteine Transporter 2**
- ■SLC7A5 (LAT1)
- **System L Amino acid Transporter 1**
- ■SLC7A11 (xCT)
- **Cystine-glutamate exchanger; x<sub>c</sub> Transporter**
- ■SLC6A14 (ATB<sup>0,+</sup>)
- Amino acid Transporter B<sup>0,+</sup>
- ■SLC38A5 (SN2)
- **System N transporter 2**

# Amino acid transporters relevant to cancer: Functional features

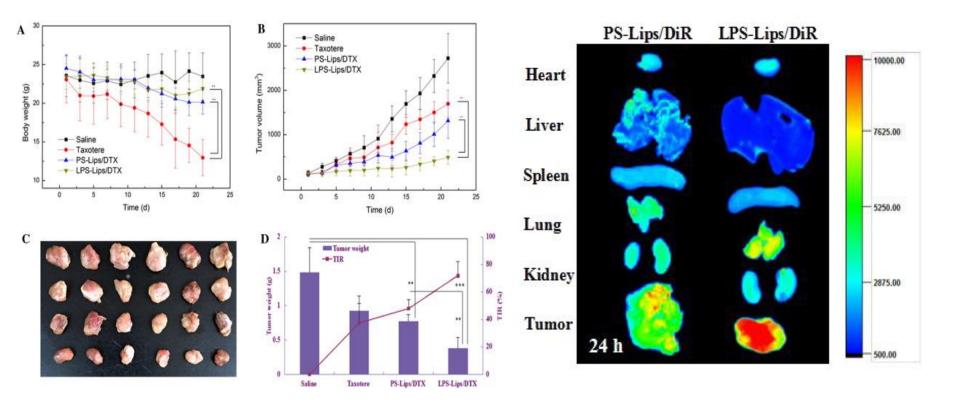


## **ATB<sup>0,+</sup> (SLC6A14)**

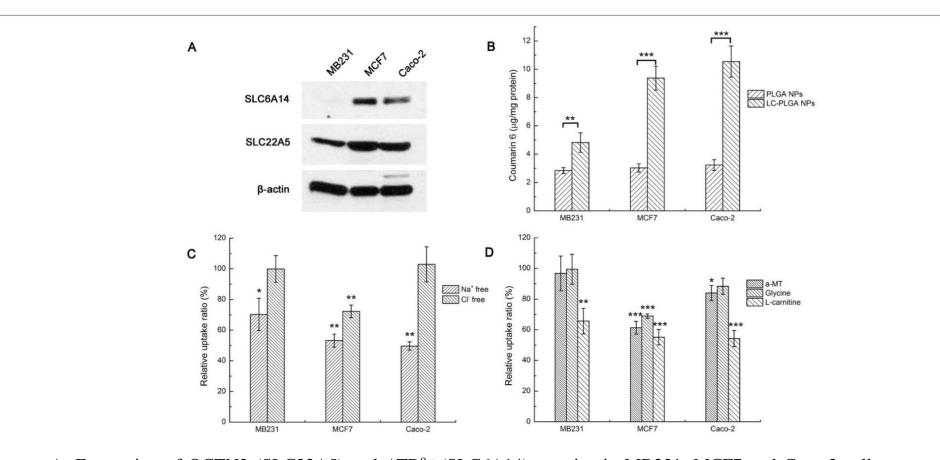
## Pros

ATB<sup>0,+</sup> is upregulated in several cancers
ATB<sup>0,+</sup> transports glutamine as well as all essential amino acids, including lysine, in a Na<sup>+</sup>/Cl<sup>-</sup> -coupled manner
Blockade of ATB<sup>0,+</sup> causes amino acid starvation and suppresses mTORC1 signaling
Blockade of ATB<sup>0,+</sup> should interfere with tumor growth
Deletion of Slc6a14 in mice has no overt phenotype
Supporting data with cancer cell lines as well as with spontaneous tumors

## Cons

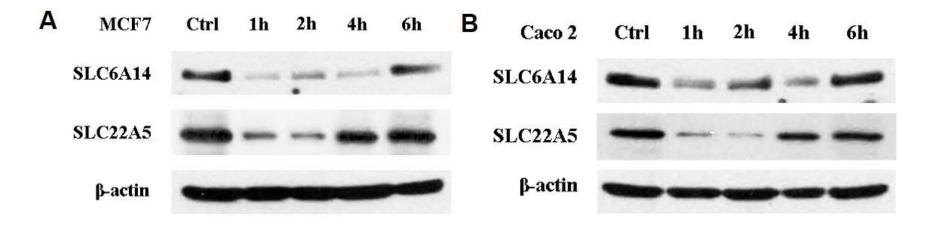

ATB<sup>0,+</sup> is upregulated only in selective types of cancers

## Amino acid transporters in pancreatic cancer


| Data set            | Glutamine<br>transporter               | Fold change          | p value                    |
|---------------------|----------------------------------------|----------------------|----------------------------|
| GSE 19650           | SLC6A14                                | 95.03                | 0.0001                     |
|                     | SLC7A5                                 | 1.09                 | 0.1699                     |
|                     | SLC7A11                                | 3.97                 | 0.0025                     |
|                     | SLC1A5                                 | 1.46                 | 0.199                      |
| GSE 15471           | SLC6A14                                | 14.61                | 1.5×e <sup>-10</sup>       |
|                     | SLC7A5                                 | 1.55                 | 0.0001                     |
|                     | SLC7A11                                | 0.85                 | 0.026                      |
|                     | SLC1A5                                 | 1.05                 | 0.1232                     |
| GSE 16515           | SLC6A14                                | 39.51                | 1.95×e <sup>-14</sup>      |
|                     | SLC7A5                                 | 2.02                 | 0.005                      |
|                     | SLC7A11                                | 1.97                 | 0.0002                     |
|                     | SLC1A5                                 | 1.28                 | 0.0013                     |
| GSE 28735           | SLC6A14                                | 13.37                | 1.88×e <sup>-14</sup>      |
|                     | SLC7A5                                 | 1.44                 | 0.0089                     |
|                     | SLC7A11                                | 1.81                 | 0.0001                     |
|                     | SLC1A5                                 | 1.2                  | 0.0025                     |
| GSE 32676           | SLC6A14                                | 163.31               | 0.0001                     |
|                     | SLC7A5                                 | 0.34                 | 0.0315                     |
|                     | SLC7A11                                | 3.1                  | 0.0009                     |
|                     | SLC1A5                                 | 1.26                 | 0.3324                     |
| GSE 19279           | SLC6A14                                | 1.33                 | 0.0551                     |
|                     | SLC7A5                                 | 1.75                 | 0.0038                     |
|                     | SLC7A11                                | 0.72                 | 0.0052                     |
|                     | SLC1A5                                 | 0.99                 | 0.2869                     |
| GSE 39751           | SLC6A14                                | 1.23                 | 0.0496                     |
|                     | SLC7A5                                 | 1.3                  | 0.258                      |
|                     | SLC7A11                                | 0.93                 | 0.196                      |
|                     | SLC1A5                                 | 1                    | 0.3702                     |
| GSE 43288-<br>GPL96 | SLC6A14<br>SLC7A5<br>SLC7A11<br>SLC1A5 | 1.29<br>1.71<br>0.96 | 0.0507<br>0.0107<br>0.3909 |

#### Table 1. Changes in expression of SLC6A14, SLC7A5,SLC7A11 and SLC1A5 in pancreatic cancer

## Amino-acid-conjugated liposomes to deliver chemotherapy agents into SLC6A14positive tumors



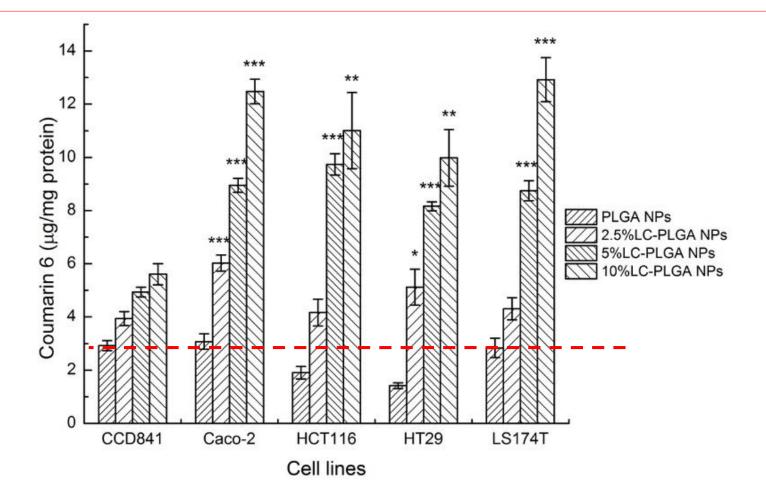

# L-Carnitine-conjugated NPs: Evidence for interaction with OCTN2 and ATB<sup>0,+</sup>



A, Expression of OCTN2 (SLC22A5) and ATB<sup>0,+</sup> (SLC6A14) proteins in MB231, MCF7 and Caco-2 cells, with  $\beta$ -actin as an internal control; B, Uptake of coumarin 6 from bare nanoparticles (PLGA NPs) and L-carnitine conjugated nanoparticles (LC-PLGA NPs) in these three cell lines; C, Effect of Na<sup>+</sup> and Cl<sup>-</sup> on the uptake of coumarin 6 from LC-PLGA NPs; D, Effect of specific inhibitors ( $\alpha$ -MT and glycine for ATB<sup>0,+</sup>, L-carnitine for OCTN2) on the uptake of coumarin 6 from LC-PLGA NPs.

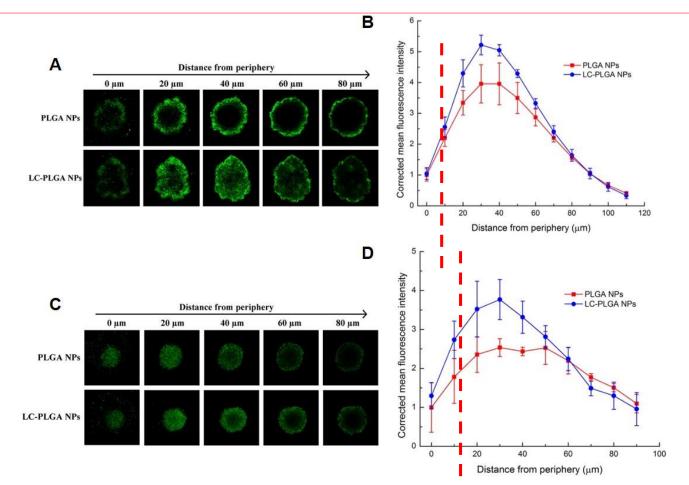

#### L-Carnitine-conjugated NPs: Interaction with OCTN2 and ATB<sup>0,+</sup>




The protein levels of OCTN2 and ATB<sup>0,+</sup> in A) MCF7 cells and B) Caco-2 cells after treatment with LC-PLGA NPs for different time periods.

#### L-Carnitine-conjugated NPs: Interaction with OCTN2 and ATB<sup>0,+</sup>

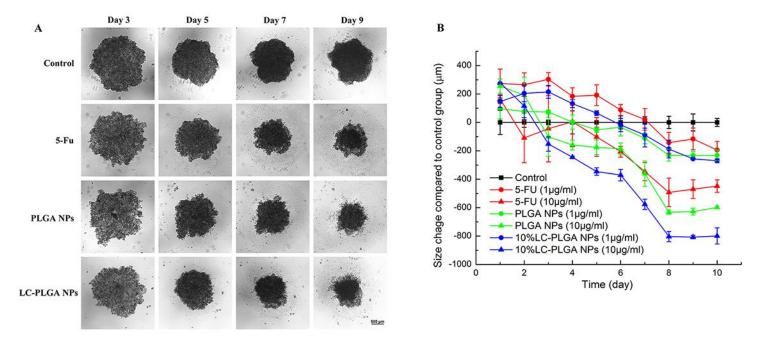
#### Potential mechanism for LC-PLGA NPs targeting to OCTN2 and ATB<sup>0,+</sup>




#### L-Carnitine-conjugated NPs: Uptake via OCTN2 and ATB<sup>0,+</sup>



Uptake of coumarin 6 from LC-PLGA NPs with different ligand density (0 to 10%) in colon cells. Data are shown as mean  $\pm$  SD, n = 3. \*, P < 0.05, \*\*, P < 0.01, \*\*\*, P < 0.001, compared to uptake in normal colon cells (CCD841).


# Coumarin-6-loaded L-Carnitine-conjugated NPs: Penetration in cancer cell 3D spheroids



Nanoparticle penetration of spheroids. Z-stack images taken by confocal microscopy showing penetration of coumarin 6-labeled PLGA NPs and LC-PLGA NPs in A) HCT116 spheroids and C) HT29 spheroids. Green color indicates coumarin 6-labeled nanoparticles; Corrected coumarin 6 flourescence intensity represents the nanoparticles in B) HCT116 spheroids and D) HT29 spheroids from periphery to the inner layer. Data are shown as mean  $\pm$  SD, (n = 3).

# 5'-FU-loaded L-carnitine-conjugated NPs: antitumor efficacy in 3D spheroids

#### **Anti-tumor efficiency in 3D spheroids**



Spheroids treatment with free 5-FU, 5-FU-loaded PLGA NPs and 5-FU-loaded 10%LC-PLGA NPs. A, Morphological change in HCT116 spheroids during 10-day treatment with 10  $\mu$ g/mL of free 5-FU, 5-FU-loaded PLGA NPs and 5-FU-loaded LC-PLGA NPs; B, Compared to control group, the size change of HCT116 spheroids treatment with 1  $\mu$ g/mL and 10  $\mu$ g/mL of free 5-FU, 5-FU-loaded PLGA NPs and 5-FU-loaded LC-PLGA NPs and 5-FU-loaded LC-PLGA NPs and 5-FU-loaded LC-PLGA NPs and 5-FU-loaded LC-PLGA NPs (n = 3).

PLGA is used widely for generation of NPs It is biodegradable and biocompatible It produces lactic acid during biodegradation

Lactate is a tumor promoter by serving as the endogenous agonist for the cell-surface GPCR GPR81

Is this good for tumor-targeted delivery of anticancer drugs?

#### Alternative???

Poly(beta-hydroxybutyric acid) It is also biodegradable and biocompatible It produces beta-hydroxybutyrate during biodegradation

Beta-hydroxybutyrate is the endogenous agonist for the cell-surface GPCR GPR109A, a tumor suppressor