APPROACHES AND LESSONS LEARNED IN ESTABLISHING HT-ADME ASSAYS

Solvo Meet-the-Experts Transporter Conference Adrian Sheldon, Charles River Labs, Worcester MA 05-Sept-2019

EVERY STEP OF THE WAY

PRESENTATION OUTLINE

- WHY **ADME** AND WHY **HT**?
- APPROACH FOR SETTING UP HT-ADME PLATFORM
- QUALIFICATION ASSAY DATA / STATISTICAL ANALYSES TO DEMONSTRATE PERFORMANCE
- LESSONS LEARNED / SUMMARY

IMPORTANCE OF ADME FOR DRUG DISCOVERY & DEVELOPMENT

- ➤ In vitro ADME data are important for triaging compounds in early discovery to enable in vivo studies: PK, PK/PD, efficacy and TK studies, before IND selection
- Critical to optimize DMPK properties to enable successful outcomes in preclinical and clinical studies
- ➤ Saves time and money to establish an IV-IV-correlation during the discovery phase

VARIETY OF IN VITRO ADME ASSAYS

BOTTLE-NECKS WITH HIGH-VOLUME ADME NEEDS

HT-ADME PLAN TO ADDRESS BOTTLE-NECKS

- > Life science industry needs capacity and rapid TAT to drive drug discovery programs
- > Target objectives (based on clients' requests):
 - > Focus on first tier assays:
 - > Liver microsomal metabolic stability
 - > Plasma protein binding (RED; Rapid Equilibrium Dialysis)
 - ➤ Permeability (Caco-2, MDCK-MDR1)
 - > Fast data TAT: <5 Days from compound receipt to delivery of results
 - > Capacity: ~500 compounds/week for primary screening assays
 - > Reformatting: ability to cherry-pick compounds and to handle a variety of inputs (a challenge in CRO environment)
- > Implement assay automation and HT-LC-MS/MS workflow (within ~8 month period)
- > LC-MS/MS optimization and data
 - > Facile MRM development and optimization (DQ)
 - > Efficient data processing and review (leverage Gubbs GMSU)
- > ADME LIMS
 - > Efficient data storage, flexible calculation and reporting

RESOURCE INVESTMENTS TO ENABLE HT-ADME

- ➤ Investments initiated in 2017 to enable HT-ADME capability to support both LT- and HT-ADME demands (capacity and flexible experimental designs)
- > Liquid handling automation:
 - > Evaluated 3 vendors in detail (hardware and software)
 - > Purchased 2 Hamilton Vantage (2m; 8- and 96-channel; temp-control, shaking)
- > HT-LC-MS/MS
 - > Evaluated LC systems and visited labs with ADDA's; considered QE accurate mass
 - > Purchased 2 Apricot ADDA with Agilent 1260s pumps and Sciex 5500 MS/MS
- > 2 systems provide redundancy along with capacity (to minimize downtime)
- ➤ A small dedicated team with internal and external expertise to enable HT set-up and qualification/validation
- ➤ LIMS: Evaluated 3 vendors in detail, selected Edge BioRails/Morphit (UK)

HT AUTOMATION (TO GENERATE AND ANALYZE SAMPLES)

Hamilton Vantage robot [2m deck; N=2]

- Compound cherry-picking
- Heating, cooling, shaking, timed incubations
- Barcoding

ADDA LC-MS/MS [N=2]

- 96/384-well plates
- Automated MRM method development
- T/E and gradient modes
- Flexible LC column and mobile phase selections

HT-ADME WORKFLOW: SOURCE→ ASSAY → BIOANALYSIS

DISCOVERYQUANT®: MRM OPTIMIZATION

- Single database which serves as central repository of all compounds assayed within the *in vitro* ADME group
- > Optimize once on a single MS (4000)
 - > Run compound plates overnight
 - > ~1 min/compound (fast tuning)
 - ~2 min/compound (fine tuning)
- Utilize the central database without having to repeat manual tuning and eliminate redundancies
- Global MS SQL server
 - Share MRM conditions
 - Review spectra

ADDA HT-LC/MS/MS SYSTEMS

- Dual-arm, high-speed multiplexing autosampler
 - ~10 seconds/injection
- ➤ Two modes of operation:
 - Trap and elute
 - TIS for "clean" samples
 - APCI for plasma samples
 - Gradient
- ➤ Software: Sound Analytics
 - DiscoveryQuant (DQ) for automated MRM optimization
 - LeadScape for acquisition

ABI 5500 MS

ADDA HT-LC-MS/MS PLATFORM

- ➤ Performs T/E and gradient modes on the fly
 - ➤ 384-well, 96-well, etc.
 - ➤ High-quality peak shape
- ➤ Diverse column chemistries [T/E]
 - $ightharpoonup RP C_{18}$: 10 mm to 30 mm, 3 μ M
 - ➤ HILIC for polar molecules
- ➤ ADDA proven to be very robust and reliable
- ➤ More flexible than RapidFire
- ➤ Need data processing software to be able to integrate multiple peaks and analytes in a single file

HT-Permeability Assay
[160 Samples Analyzed in 30 minutes]

Gradient

STEPS FOR PROCESS QUALIFICATION

- ➤ Define final assay procedure
- ➤ Optimize pipetting (liquid classes, liquid into dry plate or solution, lab temp/humidity)
- ➤ Optimize workflow efficiency (deck layout, minimize back&forth movements)
- >Run through procedure in simulation mode, then blank reagents, then real assay
- > Demonstrate results agree with expected values (literature and internal historical)
- >Assess data consistency across runs, time
- Demonstrate agreement between manual vs. robotic, and gradient vs. T/E
- Assess performance using known drug compounds, plus test "real world" discovery compounds

QUALIFICATION: METABOLIC STABILITY ASSAY

HT-ADME ASSAY VALIDATION RESULTS FOR METABOLIC STABILITY ASSAY

➤ Demonstrated consistent robot and HT-LC/MS

performance:

T/E vs. Gradient: 1 µM compound 0.5 mg/mL HLM 37°C Time course

charles river

Demonstrated equivalent results between automated assay and manual (historical) MeSt assay:

	Mean % Rema	aining at T _{60min}	Mean T 1/2 (min)		Mean CL _{int} (mL/min/kg)	
Compound ID	Automated	Manual	Automated	Manual	Automated	Manual
7-EC	2.8 ± 2.5	1.8 ± 0.2	9.7 ± 1.4	9.1 ± 0.3	131 ± 15	137 ± 4
Testosterone	22.3 ± 6.3	24.0 ± 4.6	24.9 ± 2.8	29.0 ± 2.7	50.7 ± 5.5	43.3 ± 3.9
Imipramine	52.4 ± 4.2	57.8 ± 6.6	66.7 ± 10.9	79.0 ± 17.0	19.2 ± 3.0	16.4 ± 3.2
Terfenadine	1.5 ± 0.8	1.5 ± 1.1	11.3 ± 1.7	10.4 ± 1.8	113 ± 17	123 ± 20
Quinidine	62.9 ± 5.9	70.3 ± 5.7	103 ± 31	108 ± 25	13.3 ± 4.0	12.1 ± 3.1

[Equivalency also demonstrated with 40 sponsor discovery compounds]

QUALIFICATION USING UNKNOWN NCE'S

- > 40 discovery compounds submitted by Sponsor for HLM
- > Concentration: 1 μM

Perform statistical analyses to assess equivalency between manual vs. automation vs. T/E vs. Gradient

HLM: MANUAL VS AUTOMATION FOR NCEs [N=40] T/E & GRADIENT [CL_{INT}]

QUALIFICATION: PROTEIN BINDING ASSAY (RED)

HT-RED PLASMA PROTEIN BINDING

- > Typically test 1-2 μM compound (from 1000X DMSO stock)
- ➤ Replicates: N=1 to 3
- \triangleright Incubation time: 6 hrs with gentle mixing in 5% CO₂ at 37°C (to provide longer time to reach equilibrium, and to maintain pH)
- Matrices: Mouse, rat, dog, monkey, human plasma
 - > Human lots are pre-screened (warfarin % binding, common control compounds, since we have noticed more unacceptable lots in recent years)
 - > May be valuable to pre-screen with AGP binders too (plasticizers etc. can affect)
- \triangleright Often include a concurrent matrix stability and recovery control (T₀ vs T₆)

HT-ADME ASSAY VALIDATION RESULTS: RED PPB ASSAY

➤ Demonstrated consistent robot performance:

➤ Demonstrated equivalent results between automated assay and manual (historical) assay:

	Mean %	n % Bound		
Compound ID	Automated	Manual		
Chlorpromazine	97.3 ± 1.4	95.8 ± 5.1		
Digoxin	47.7 ± 18.3	45.6 ± 12.2		
Propranolol	83.5 ± 3.2	83.8 ± 0.6		
Verapamil	87.4 ± 0.8	87.7 ± 3.6		
Warfarin	99.1 ± 0.4	99.1 ± 0.3		

Equivalency also demonstrated with 68 sponsor discovery compounds:

PPB [RED] VALIDATION USING UNKNOWN NCES

➤ 40 discovery compounds submitted by Sponsor for PPB

> Concentration: 1 μM

➤ Incubation time: T6 hrs with gentle mixing in 5% CO₂

Perform statistical analyses to assess equivalency between manual vs. automation vs. T/E vs. Gradient

PPB [RED] USING AUTOMATION: T/E AND GRADIENT ANALYSIS

Fraction Unbound

T/E vs. Gradient with 45-degree Line

Correlation Coefficient of **LOG-LOG** Plot = 1.000

4 points below the 45-degree line 21 points above the 45-degree line

Automation

1.04

1.13

0.0004

RLs

Sig Diff Between

Runs Test, p =

LsA

SD

0.85

1.39

0.0380

PPB [RED] USING MANUAL: T/E AND GRADIENT ANALYSIS

Fraction Unbound

T/E vs. Gradient with 45-degree Line

Correlation Coefficient of **LOG-LOG** Plot = 0.999

21 points below the 45-degree line12 points above the 45-degree line

Manual

T/E and Gradient Analysis Demonstrated Equivalent Performance By Deploying ApCI for T/E analysis

	Statistical	Analysis of "I	Bland-Altman"	Plot				
	Equivalence Test Results				Reproduc			
	N	34						
	MR	0.97			MSR (W	/ithin-Run)	1.21	
	RLs	0.94				LsA	0.80	
		1.00					1.17	
Sig Diff Between						SD	0.0294	
Runs Test, p =		0.0487						

QUALIFICATION: PERMEABILITY ASSAY

HT-ADME ASSAY VALIDATION RESULTS FOR PERMEABILITY ASSAY

- \triangleright Typically 10 μ M, n=3, 2 hours incubation
- ➤ Demonstrated consistent performance (gradient vs T/E):

OTHER HT-ADME ASSAY PROJECTS

- > Have added additional assay capabilities (CYP inhibition, aqueous solubility, etc.)
- >Working on logD (octanol/water) assay using RED units (spike PBS at 100 μM, dialyze vs. octanol, sample PBS after 18 hours); format easier to automate than shake-flask.

SUMMARY: BOTTLE NECKS ADDRESSED TO ENABLE HT-ADME AT CHARLES RIVER

LESSONS LEARNED

Liquid Handling Automation

- 1) Hamilton hardware is solid, dependable (following some tweaks after installation)
- 2) Should have looked into variety and details of available hardware options in more detail (some accessories were more useful than others)
- 3) Hamilton Venus (VoV) software is very powerful but was more complex and longer learning curve than expected (initial vendor assistance was very important; need internal expert; found different programmers have different styles)
- 4) Pipetting accuracy is very dependent on parameters (e.g., liquid class, speed, height above well or cells, etc.); use real reagents vs. water for testing; in hindsight would have been helpful to define optimal pipetting parameters and plasticware earlier in process

HT-LC-MS/MS; Data Management

- 1) ADDA hardware observed to be solid, reliable
- 2) Slight stream differences observed, but is mitigated by running a complete set of samples for each compound within a single stream only
- 3) Fast data processing is key to reduce bottle-neck
- Evaluated MultiQuant, LeadScape and GMSU, etc. (often using GMSU)
- 5) Evaluated diverse ADME LIMS options; critical to be track compounds in/data out; decide how much flexibility is required (decided to implement BioRails/Morphit; very happy with choice)

ACKNOWLEDGMENTS

Charles River:

- HT-In Vitro ADME team
 - David Plourde
 - Patty Walton
 - Allison Lewia
 - Jakal Amin
 - Guofeng Ye
 - Sarah Meloche
- In Vitro ADME team
- Charles River-Data Science
 - Viswanath Devanarayan
- Many other colleagues (IT)

Software/ Equipment Vendors:

- Apricot
- SoundAnalytics
- Gubbs, Inc. (Larry Elvebak)
- Edge/BioRails (Andrew Lemon)

Any further questions: adrian.sheldon@crl.com 508-471-5527

