Solvo Transporter Symposium (11/14/19)

Long-lasting inhibition of OATPs: Update on the mechanisms and impact

Wooin Lee, PhD College of Pharmacy, Seoul National University

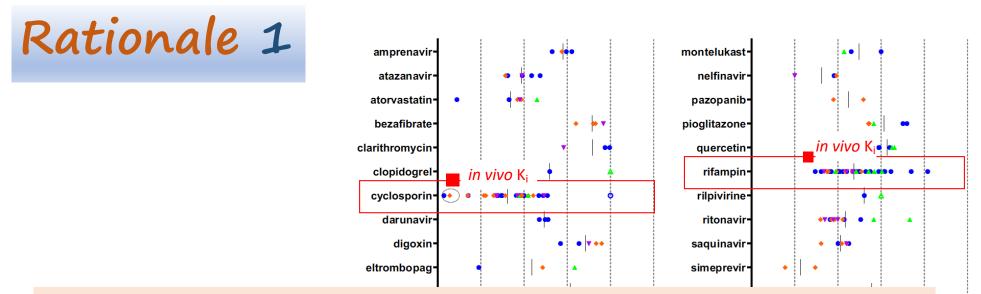
College of Pharmacy Seoul National University <u>OATP1B1 and OATP1B3</u>: The sponsor should conduct studies to determine the inhibition potency (i.e., IC_{50} or K_i) of the investigational drug on the uptake of a known OATP1B1 or OATP1B3 substrate in cells overexpressing the relevant transporter. Because some known OATP1B1/3 inhibitors demonstrate time-dependent inhibition, the sponsor should determine IC_{50} values following pre-incubation with the investigational drug for a minimum of 30 minutes (Amundsen, Christensen, et al. 2010; Gertz, Cartwright, et al. 2013; Izumi, Nozaki, et al. 2015).

(Oct. 2017)

When determining the IC₅₀ or K_i values for OATPs, "pre-incubation for a minimum of 30 min"

(2017)

be utilized. For the determination of K_i value of the investigational drug, typical substrates can be selected from Table 2-1 and their recommended concentration should be sufficiently lower than their K_m value. Also, when calculating the K_i value, preincubation for 30 minutes or more is performed.


Long-lasting inhibition

Short-lasting inhibition

Preincubation-dependent inhibition

Potentiation of transporter inhibition by preincubation (PTIP)

Time-dependent inhibition

- Wide variability (substrate-dependency, inter-lab variability, experimental systems & conditions)

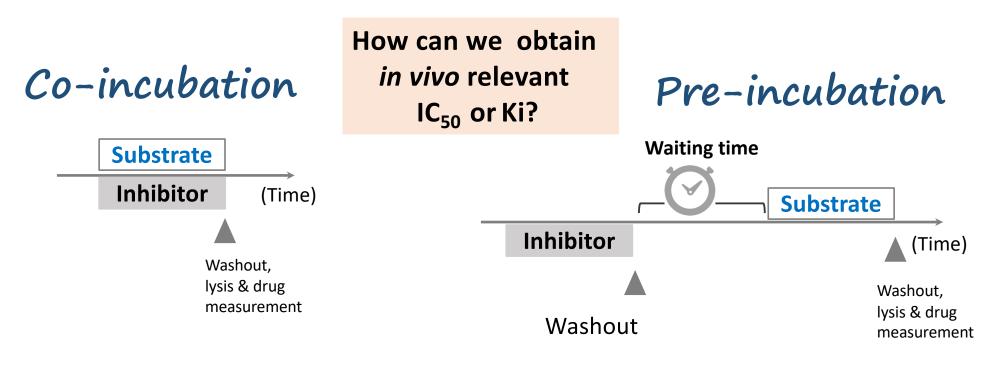
1000

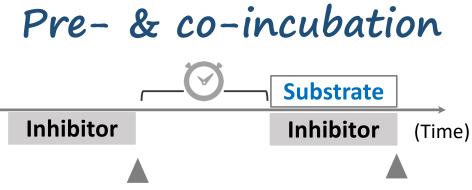
 Large discrepancy between the inhibitory potencies obtained in vitro & in vivo (from PBPK modeling) in vitro K_i or IC₅₀ (μM)

Vaidyanathan et al. J Clin Pharmacol. 2016; PMID: 27385179

Rationale 2

11 substrates, 61 inhibitors of OATP1B1 107 clinical (in vivo) DDI studies


$R=1 + I_{u,in,max} / (K_i \text{ or } IC_{50})$

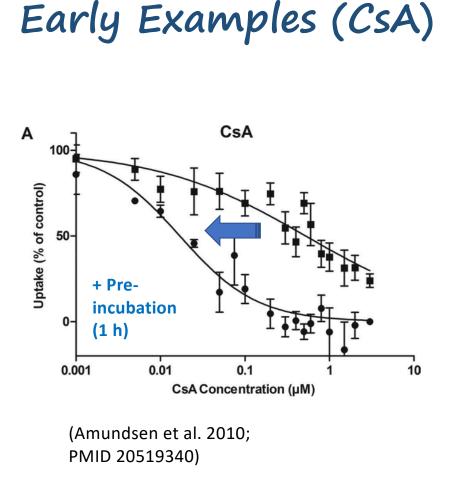

		R ≥	1.1?
		Yes	No
Clinical	Yes	40 (True positive)	12 (False negative)
DDI	No	22 (False positive)	33 (True negative)

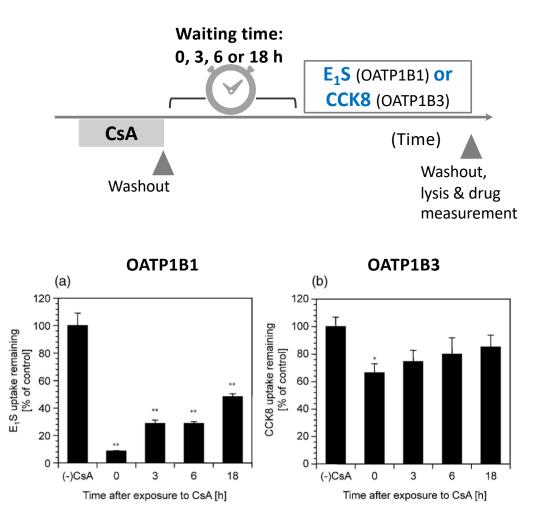
Vaidyanathan et al. J Clin Pharmacol. 2016; PMID: 27385179

Positive predictive value	65%
(=TP/[TP+FP])	(40/62)
Negative predictive value	73%
(=TN/[TN+FN])	(33/45)

What can we do to reduce false (+/-) predictions?

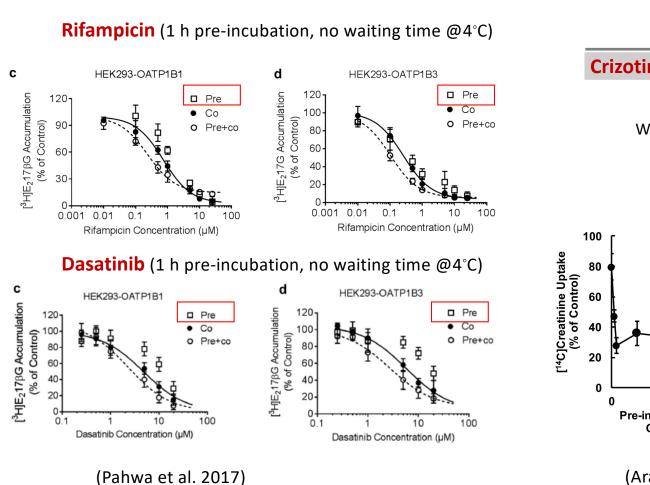
- ✓ Preincubation-dependent inhibition
- Time-dependent inhibition
- ✓ Long-lasting inhibition
- ✓ Short-lasting inhibition

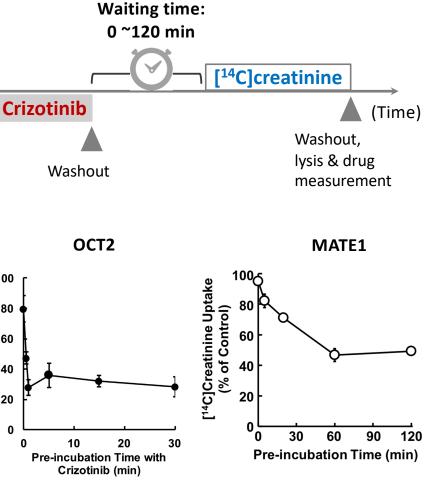

List (as of 2017)


Transporters	Inhibitors	Inhibitors			
	Preincubation time-depende of transporter inhibition	Preincubation time-dependent enhancement effect of transporter inhibition			
	Positive (+)	Negative $(-)^a$			
OATP1B1	CsA ^b (and AM1) Simeprevir Asunaprevir Ritonavir (weak) ^b Gemfibrozil (weak)	Tacrolimus Saquinavir ^b Rifampicin Rifamycin SV Sildenafil Clarithromycin Erythromycin Telmisartan Glibenclamide Ketoconazole			
OATP1B3	CsA ^b (and AM1) Simeprevir Asunaprevir	Retoconazoie			
OATP2B1	Apple juice ^b Orange juice ^b				
OAT1	Chrysophanol Physcion	Probenecid Rhein Emodin Aloe-emodin			
OAT3	Chrysophanol Physcion Emodin Aloe-emodin	Probenecid Rhein			

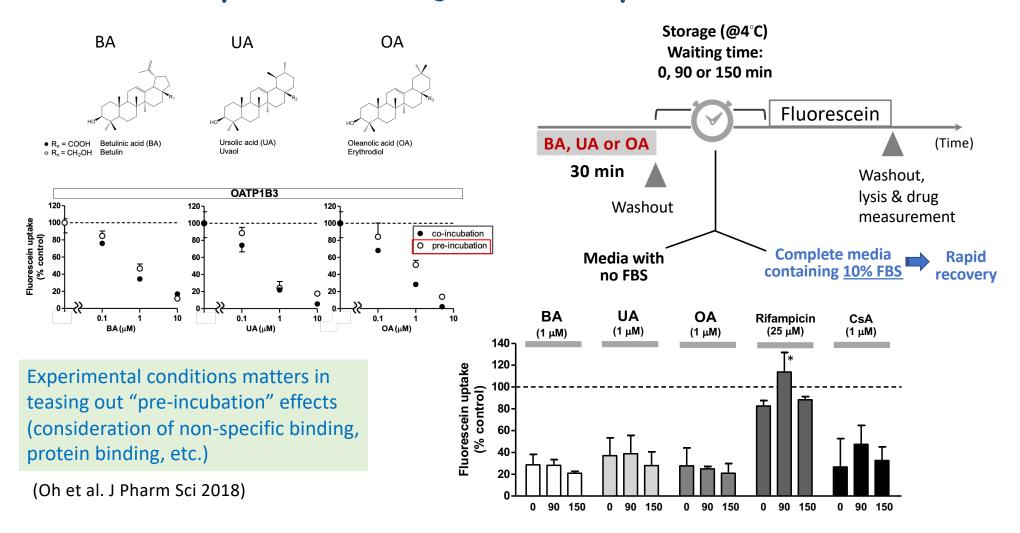
Shitara & Sugiyama Pharmacol Ther. 2017; PMID: 28249706

List expands... (as of Nov. 2019)


Transporters	Inhibitors	references
OAT1/3	anthraquinones	Ma et al. 2015
OATP1B1/1B3	rifampicin, dasatinib	Pahwa et al. 2017
OCT2	crizotinib	Arakawa et al. 2017; Omote et al. 2018
OATP1B3	pentacyclic triterpenoids (betulinic acid, ursolic acid, oleanolic acid)	Oh et al. 2018
OATP1B1/1B3	everolimus, sirolimus	Farasyn et al. 2019
OCT1	CsA	Panfen et al. 2019
OATP1B1	pazopanib	Taguchi et al. 2019
OATP1B1/3	venetoclax, saquinavir	
OCT1/2	ledipasvir , daclatasvir, vandetanib , cetirizine, isavuconazole	Tátrai et al. 2019
MATE2-K	vandetanib	



(Shitara et al. 2012; PMID 20519340)


More Examples (Rif, TKIs)

(Arakawa et al. 2017; Omote et al. 2018)

More Examples (Pentacyclic Triterpenoids)

Mechanism 1: Non-specific binding??

- The time required for maximum enhancement by pre-incubation: compound-dependent
- Compounds tend to be highly lipophilic and protein bound

	cLogP	f _u (plasma)
CsA	14.0	0.015
simeprevir	4.8	0.001
asunaprevir	3.1	<0.01
venetoclax	10.0	0.000013
ledipasvir	6.7	<0.002
daclatasvir	4.7	<0.01
pazopanib	3.6	<0.01
daclatasvir	4.7	0.01
betulinic acid	6.6	0.0001
crizotinib	3.7	0.09

A Systematic In Vitro Investigation of the Inhibitor Preincubation Effect on Multiple Classes of Clinically Relevant Transporters^S

Péter Tátrai, Patrick Schweigler, Birk Poller, Norbert Domange, Roelof de Wilde, Imad Hanna, Zsuzsanna Gáborik, and Felix Huth

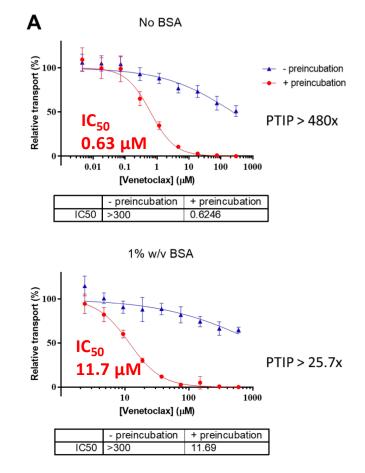
Drug Metab Dispos. 2019; PMID: 31068368

PTIP: Potentiation of transporter inhibition by pre-incubation for **3 h**

X . 1 . 1		PTIP (Fold	Potentiation)	
Inhibitor	NSB Block -	NSB Block +	NSB Block -	NSB Block +
	OAT	P1B1	OAT	P1B3
Venetoclax	203	>258	>13.2	>8.70
Cyclosporin A	5.88	6.78	3.75	3.02
Saquinavir	3.17	3.54	4.60	3.78
Atorvastatin	1.88		2.26	
Rifampicin	1.47		1.72	
Gemfibrozil	0.976		0.672	
	OAT1		OAT3	
Benzbromarone	1.82		4.96	1.51
Furosemide	1.44		0.723	
Valsartan	1.40		1.58	
Probenecid	1.37		1.58	
Diclofenac	1.25		0.428	
Bumetanide	1.19		1.32	
Gemfibrozil	0.514		1.21	
Rifampicin	N/D		N/D	
Saquinavir	N/D		N/D	
Pravastatin	N/D		N/D	

Plasticware precoated against nonspecific binding (NSB) using 20% (v/v) FBS, 2% (w/v) BSA

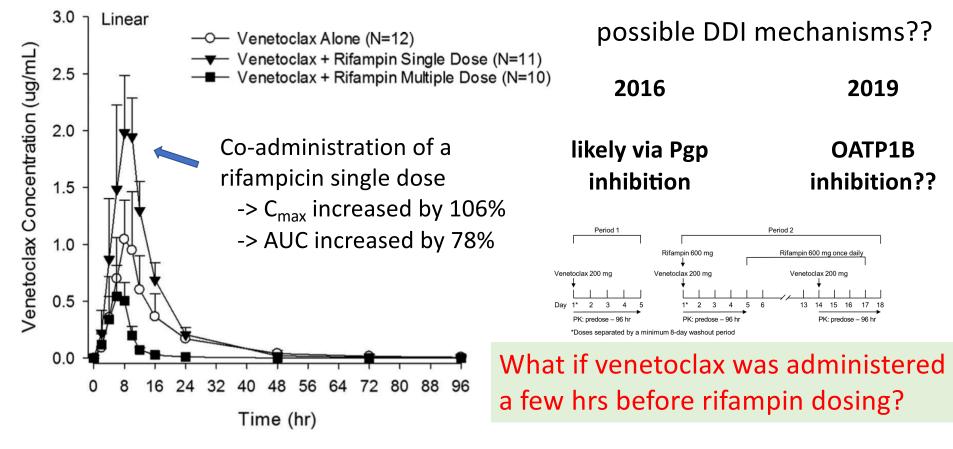
T-1-11-14		PTIP (Fold	Potentiation)	
Inhibitor	NSB Block -	NSB Block +	NSB Block -	NSB Block +
	0	CT1	0	CT2
Ledipasvir	>594	>255	>4.04	>8.73
Irinotecan	17.3	5.43	2.12	
Saquinavir	7.81	4.09	N/D	
Daclatasvir	3.42	5.65	156	34.2
Verapamil	3.36	3.06	1.86	
Vandetanib	3.14	2.69	5.36	4.19
Cetirizine	3.12	1.78	3.35	1.55
Isavuconazole	3.00	2.98	5.52	13.2
Cimetidine	1.71		N/D	
Amisulpride	1.61		1.18	
Ranolazine	1.35		1.08	
Trimethoprim	1.35		1.28	
Abacavir	0.892		N/D	
Dolutegravir	N/D		6.20	11.3
-	M	ATE1	MA	ТЕ2-К
Pyrimethamine	1.88		2.09	
Vandetanib	1.81		2.54	3.00
Trimethoprim	1.75		1.07	
Ondansetron	1.57		1.04	
Isavuconazole	1.53		2.46	1.38
Cimetidine	1.27		0.747	
Famotidine	1.12		1.73	
Ranitidine	0.668		0.438	


- Oral selective BCL-2 inhibitor
- Initial FDA approval (2016) for the treatment of acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), or small lymphocytic lymphoma (SLL)

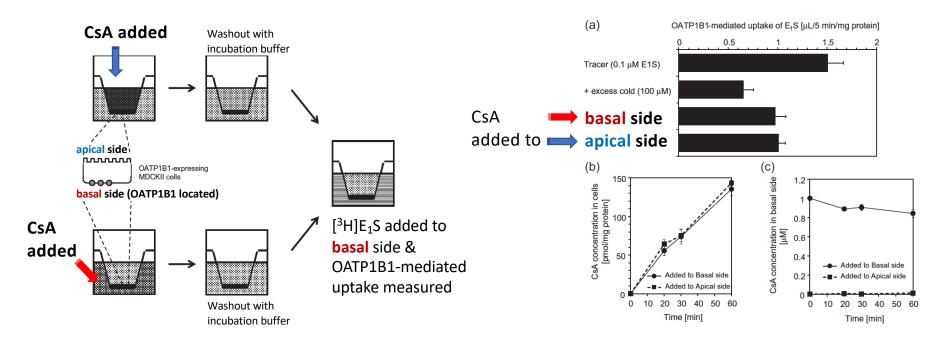
IC50 values of venetoclax

Protein Inhibited	Venetoclax [µM]	
 P-gp	30.0 ± 3.7	
BCRP	19.6 ± 7.3	
OATP1B1	47.8 ± 10.1	
OATP1B3	26.0 ± 9.6	
CYP1A2	no inhibition	
CYP2B6	activation	
CYP2C19	14.21 ± 1.0	Tested using 8-FcA as a
CYP2D6	no inhibition	probe substrate (10 min
CYP3A4	7.2 ± 3.2	incubation) in HEK-
		OATP1B1 & HEK-OATP1B3

(Weiss et al 2016; PMID: 26927160)

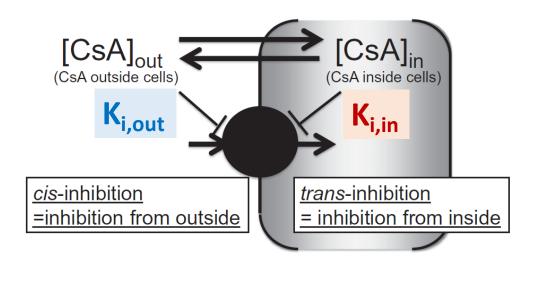

OATP1B1

(Tátrai et al. 2019; PMID: 31068368)


Venetoclax

Clinical DDI??

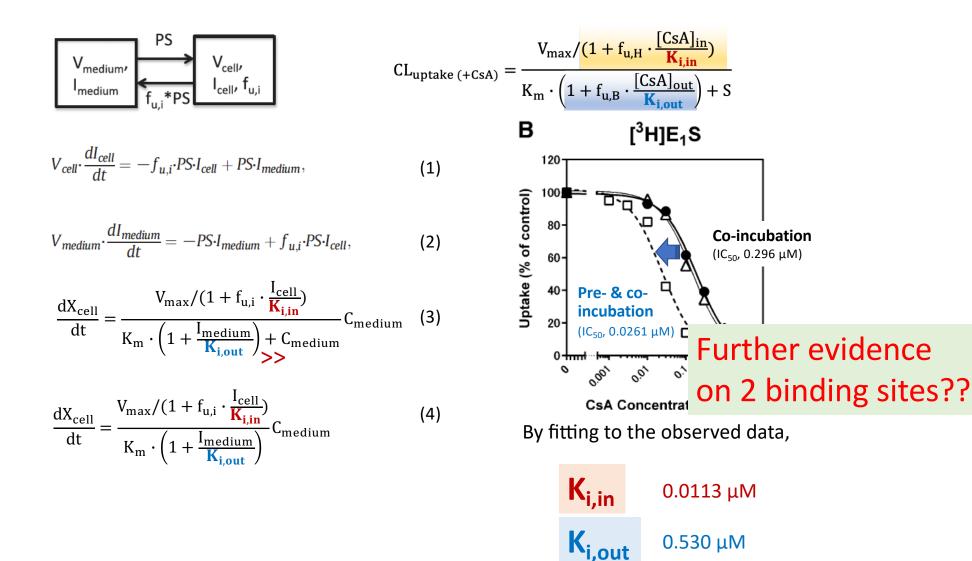
⁽Agarwal et al. 2016; PMID 26953185)


Mechanism 2: trans-inhibition?

Long-lasting inhibition of OATP1B1 by CsA could be driven by CsA inside the cells.

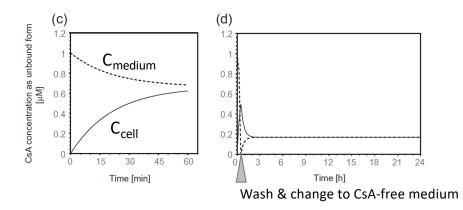
Shitara & Sugiyama Pharmacol Ther. 2017; PMID: 28249706

Mechanism 2: trans-inhibition?

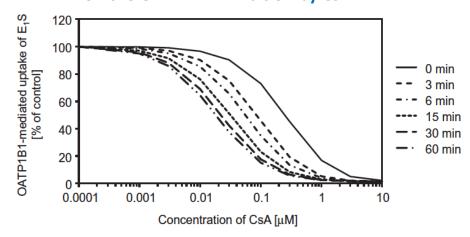


$$CL_{uptake (+CsA)} = \frac{V_{max} / (1 + f_{u,H} \cdot \frac{[CsA]_{in}}{K_{i,in}})}{K_m \cdot (1 + f_{u,B} \cdot \frac{[CsA]_{out}}{K_{i,out}}) + S}$$

trans-inhibition (non-competitive)

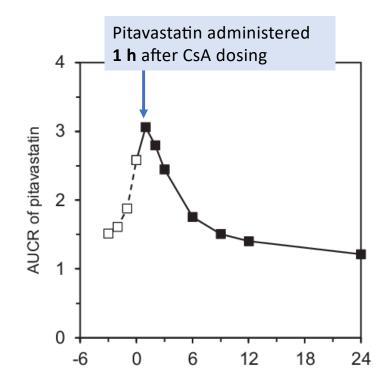

cis-inhibition (competitive)

Shitara & Sugiyama Pharmacol Ther. 2017; PMID: 28249706

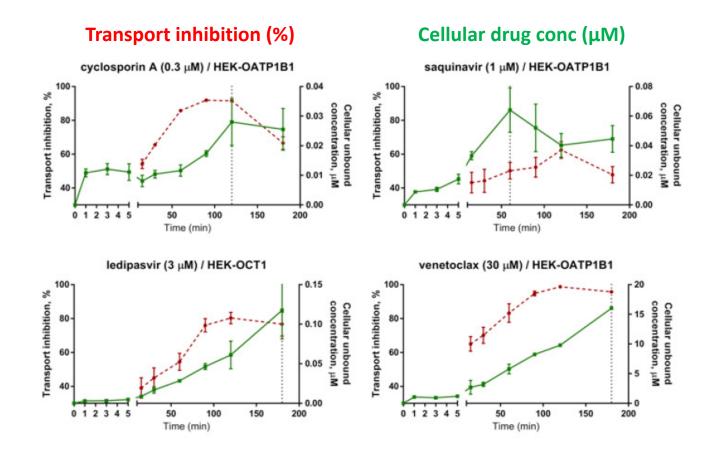


Shitara & Sugiyama Pharmacol Ther. 2017; PMID: 28249706

Simulation of CsA concentrations: in cells vs medium



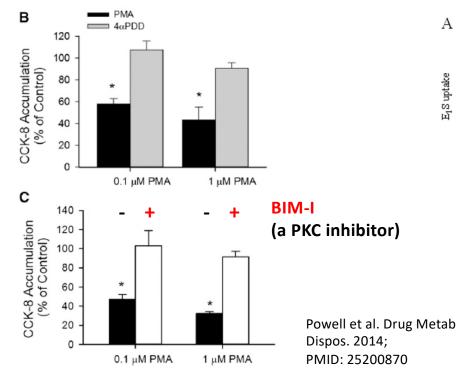
Simulation of pre-incubation effects on the OATP1B1 inhibition by CsA



Shitara & Sugiyama Pharmacol Ther. 2017; PMID: 28249706

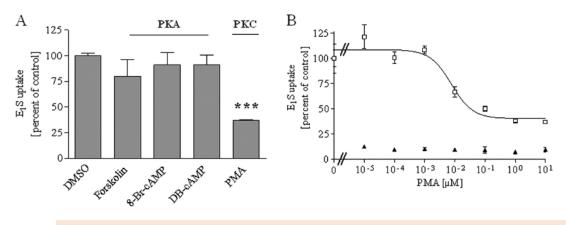
Prediction of pitavastatin AUC changes by CsA coadministration at different time intervals (via PBPK modeling considering *trans*-inhibition)

Time of pitavastatin administration after CsA administration [



Tátrai et al. Drug Metab Dispos. 2019; PMID: 31068368

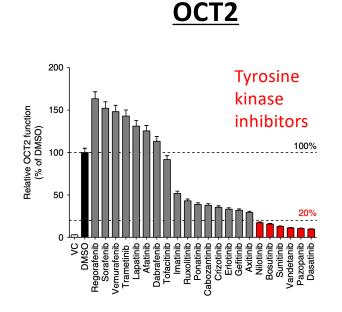
These profiles support that the potentiation of the transport inhibition by pre-incubation is likely driven by drug concentrations inside cells.

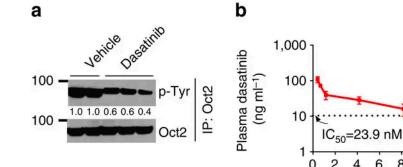

Mechanism 3: Internalization, post-translational regulation??

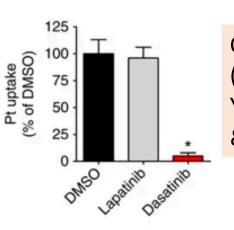
OATP1B3

PMA: Protein kinase C (PKC) activator

OATP2B1




PKC activation


-> ① phosphorylation of OATP2B1,
↓ OATP2B1 transport activity (↓ V_{max})

Kock et al. J Biol Chem. 2010; PMID: 20159975

Mechanism 3: Internalization, post-translational regulation??

OCT2 activity regulated by p-Tyr switch (mediated by the Src family kinase Yes1); TKIs can reduce oxaliplatin uptake & toxicity in vivo

С

500 400

300

200

100

0

Plasma TEA (ng ml⁻¹)

8

6

Time (h)

Vehicle

WT

Dasatinib

NS

Oct1/2-/-

Sprowl et al. Nat Commun. 2016; PMID: 26979622

k _{recovery} values after preincubation with pazopanib, CsA, and rifampic	k _{recoverv}	values afte	r preincubation	with pazo	panib, CsA	and rifampicin
--	-----------------------	-------------	-----------------	-----------	------------	----------------

Inhibitors	Concentration (µM)	$k_{recovery} (h^{-1})^a$
Pazopanib	0.1	>3.31
	0.3	>6.26
	1	6.99
	3	7.16
	10	5.62–9.46 ^b
CsA	0.3	0.546
Rifampicin	100	>20.4

^a The k_{recovery} was calculated by replotting the data shown in Fig. 3 into sigmaminus plot in logarithmic scale, followed by linear regression analysis.

^b The values of 5.62 and 9.46 were obtained from Fig. 3A and B, respectively.

The reduced OATP1B1 activity by pazopanib was much more rapidly recovered than CsA. (<0.5 h vs a few hours)

Differences in mechanisms??

https://doi.org/10.1016/j.dmpk.2019.08.001

Taguchi et al. DMPK 2019;

Coming ahead~

 List will expand as more compounds will be tested with pre-incubation

Transporters	Inhibitors		Transporters	Inhibitors	references
	Preincubation time-dependent enhancement effect of transporter inhibition		OAT1/3	anthraquinones	Ma et al. 2015
Positive (+) Negativ	Negative $(-)^a$	OATP1B1/1B3	rifampicin, dasatinib	Pahwa et al. 2017	
OATP1B1	CsA ^b (and AM1) Simeprevir Asunaprevir Ritonavir (weak) ^b Gemfibrozil (weak)	Tacrolimus Saquinavir ^b Rifampicin Rifamycin SV Sildenafil	OCT2	crizotinib	Arakawa et al. 2017; Omote et al 2018
OATP1B3	CsA ^b (and AM1)	Garithromycin Erythromycin Telmisartan Glibenclamide Ketoconazole	OATP1B3	pentacyclic triterpenoids (betulinic acid, ursolic acid, oleanolic acid)	Oh et al. 2018
0/11/100	Simeprevir Asunaprevir		OATP1B1/1B3	everolimus, sirolimus	Farasyn et al. 2019
OATP2B1	Apple juice ^b		OCT1	CsA	Panfen et al. 2019
OAT1	Chrysophanol Physcion	Probenecid Rhein	OATP1B1	pazopanib	Taguchi et al. 2019
	, nyocion	Emodin	OATP1B1/3	venetoclax, saquinavir	
OAT3	Chrysophanol Physcion Emodin Aloe-emodin	Aloe-emodin Probenecid Rhein	OCT1/2	ledipasvir, daclatasvir, vandetanib, cetirizine, isavuconazole	Tátrai et al. 2019
Shitara & Sugiyar	ma Pharmacol Ther. 2017; PN	IID: 28249706	MATE2-K	vandetanib	1

(the results will likely vary in terms of the extent/recovery time of preincubation-dependent inhibition; key molecular features/descriptors may emerge)

 Better mechanistic understanding (further evidence on *"trans*-inhibition"; binding equilibrium)

Coming ahead~

- Less variability in assessing the transport inhibition potency (K_i or IC₅₀ values); refinement of experimental conditions for preincubation studies (pre-incubation times; control of non-specific binding; assay duration)

Acknowledgements

<u>Students/Post-docs</u> (@SNU)

Jieun Park, PhD Yearin Jun, MS **Yunseok Oh, MS** Gongmi Ryoo, MS Songhee Han, PhD Se-Eun Chun, MS Naeun Yoon Zisoo Yoo Ji Yoon Choi Hyeryung Jang Jeong-min Ha <u>Collaborators</u> (@Riken, Japan)

Yuichi Sugiyama, PhD Kota Toshimoto, PhD Satoshi Koyama, PhD Saki Izumi, PhD (Eisai, Japan)